# Lecture 4: Introduction to Cellular Automata

Complex Systems 530

## What is a cellular automaton?

- Automata: "a theoretical machine that changes its internal state based on inputs and its previous state" (usually finite and discrete) - Sayama p.185
- Cellular automata: automata on a regular spatial grid, that update state based on their neighbors' states, using a state transition function
- Usually synchronous, discrete in time & space, often deterministic (but not always!)

#### Neighborhood



State set





State-transition function

| CTRBL    | CTRBL      | CTRBL    | CTRBL    |  |
|----------|------------|----------|----------|--|
| <b>□</b> | <b>□</b>   | <b>■</b> | <b>□</b> |  |
| <b>□</b> | <b>———</b> | <b>▶</b> | <b>▶</b> |  |
| <b>□</b> | <b>——</b>  | <b>▶</b> | <b>▶</b> |  |
| <b>□</b> | <b>-</b>   | <b>■</b> | <b>▶</b> |  |
| <b>□</b> | <b>——</b>  | <b>▶</b> | <b>▶</b> |  |
| <b>□</b> | <b>-</b>   | <b>▶</b> | <b>▶</b> |  |
| <b>□</b> | <b>-</b>   | <b>▶</b> | ▶        |  |
| <b>□</b> | <b>□</b>   | <b>►</b> | <b>►</b> |  |

Figure 11.1: Schematic illustration of how cellular automata work.

#### Cellular automata

- Cellular automata can generate highly nonlinear, even seemingly random behavior
- Much more complexity than one might expect from simple rules—emergent behavior
- To explore this, let's start with an even 'simpler' type of cellular automata—1-dimensional CA and some of the classic work of Stephen Wolfram

#### 1-dimensional CA

- We can think of our grid as a string or line of cells
  - Finite sequence 1 row of cells, so everyone has 2 neighbors except the end points
    - Choose how to interpret the ends (lack of neighbors or fixed states at ends)
  - Ring all cells have 2 neighbors
  - Infinite sequence an infinite number of cells arranged in a row

## Finite sequence 1D CA

- Start with a 3-cell neighborhood (left, self, right)
- We can fully specify our CA by listing all the possible neighborhood configurations and saying what happens to the center cell, for example:

| prev | 111 | 110 | 101 | 100 | 011 | 010 | 001 | 000 |
|------|-----|-----|-----|-----|-----|-----|-----|-----|
| next | 0   | 0   | 1   | 1   | 0   | 0   | 1   | 0   |

 We can name our CA by translating the "next" row from binary to decimal: this is Rule 50! (256 total possible CAs of this type)

#### Rule 50



Figure 6.1: Rule 50 after 10 time steps.

### Rule 30

What happens if we keep going?



#### Wolfram's CA Classification

- CA can produce surprisingly complex behavior
- Wolfram classification 4 classes of 1D CA
  - Class I almost all initial conditions evolve to a homogeneous state, any initial randomness is lost (e.g. Rule 0)
  - Class II Simple pattern, stable, oscillating, nested structure (e.g. Rule 18)



Figure 6.3: Rule 18 after 64 steps.

#### Wolfram's CA Classification

- Class III CAs that produce seemingly random or chaotic patterns
- Can produce sequences difficult to distinguish statistically from random, though the underlying process is deterministic
- Class III CAs typically do not produce long-lasting structures (persisting over many time steps)



Figure 6.4: Rule 30 after 100 time steps.

#### Wolfram's CA Classification

- Class IV Evolve in complex ways that involve a mix of "chaotic" and "ordered" (Class II and Class III)
  - Have the potential to evolve local structures that persist over many time steps



Figure 6.5: Rule 110 after 100 time steps.





Figure 6.6: Rule 110 with random initial conditions and 600 time steps.

## Class IV CA's and computability

- Rule 110 has been proved to be computationally universal, i.e. Turing complete (Cook M., 1998)
- So is Conway's Game of Life (classic 2D CA), and others
- Such CA can be used to compute any computable function (discuss Church-Turing Thesis)
- Wolfram's Conjecture: Every Class IV CA is Turing complete?

#### Cellular Automata

- Dimensionality How many dimensions?
- Boundaries none (infinite domain), periodic (wrapped), cut-off (edge cells have fewer neighbors), fixed (edge cells take a fixed state)
- Grid size
- **Grid type** for 2D and higher; square is typical (& will be our focus), but can do others!



#### Cellular Automata

- State Set binary, n-ary?
- Initial conditions single cell active, random, etc.
- Neighborhood queen/rook (Moore/Von Neumann), neighborhood radius
- Rules totalistic (depends only on sum over neighborhood, e.g. majority rule), symmetric (e.g. state transition is the same up to rotation)

#### CA Notation

$$s_{t+1}(x) = F(s_t(x+dx_0), s_t(x+dx_1), \dots, s_t(x+dx_{n-1}))$$

- $s_t(x)$  is the state of cell x at time t
- $N = \{dx_0, dx_1, \dots, dx_{n-1}\}$  is the neighborhood
- Neighborhood usually defined as cells within a given radius r of x

## Parity Rule

$$s_{t+1}(x) = \sum_{i=0}^{n-1} s_t(x + dx_i) \mod k$$

- Based on the mod k sum of neighborhood values (where k is the number of states)
- For binary CA, means they turn on/off based on if sum is even/odd



## Conway's Game of Life

- Possibly the most classic/well-known CA
- Large community of researchers/hobbyists, helped kick-start the field of 'artificial life'
- Produces enormous range of interesting, non-trivial behaviors
- Turing-complete

### Conway's Game of Lie

- Queen neighborhood (Moore neighborhood)
- A dead cell becomes alive if surrounded by exactly 3 live cells
- A living cell remains alive if surrounded by 2 or 3 living cells, otherwise it dies (either due to over- or underpopulation)

## Conway's Game of Life



Figure 11.6: Typical behavior of the most well-known binary CA, the Game of Life.





## Conway's Game of Life

- Epic collection of Conway's Game of Life patterns: <a href="https://youtu.be/C2vgICfQawE?t=70">https://youtu.be/C2vgICfQawE?t=70</a>
- Nicky Case Simulator version: <a href="https://ncase.me/sim/?s=conway">https://ncase.me/sim/?s=conway</a>
- Web version to try: <a href="https://playgameoflife.com">https://playgameoflife.com</a>
- ca-gameoflife.py in PyCX
- Game of life wiki: <a href="https://conwaylife.com/wiki/Main\_Page">https://conwaylife.com/wiki/Main\_Page</a>
- NYT: <a href="https://www.nytimes.com/2020/12/28/science/math-conway-game-of-life.html">https://www.nytimes.com/2020/12/28/science/math-conway-game-of-life.html</a>

#### Turmites

- 2D Turing machine generalizations
- Named "Turmites" after Turing and the fact that the write-head of the 'machine' moves similarly to a bug
- The 'turmite' or 'ant'
- E.g. Langton's Ant

## Applications of CA & real-world examples

- Forest fire models/disease epidemics
- Sand heaps/avalanches
- Majority rule and voter models
- Diffusion-limited aggregation (DLA), percolation, lattice models of materials
- And many more—some more realistic than others
- Many ABMs can be viewed as CA, or near-CA (e.g. if we allow probabilistic rather than deterministic rules)

#### CA on seashells

• Conus textile appears to operate with Rule 30 (or



### CA on lizard scales







## CA & ABM Dynamics

- Not always easy to interpret! Can have many patterns, as we saw with Game of Life, etc.
- However, sometimes there are major overall patterns that we can see
- More on this next time!

### For next time...

- Reading
  - Sayama Chapter 11
  - Think Complexity Chapter 6
- We'll discuss 2D CA, how to build CA, variations on CA, and theory for how to analyze the complexity and dynamics of CA