Network SIR Model - Meanfield. -Grdös-kinggruph -syndwonovis time step 5-susceptible - Discare states: I-infections K-recovered - Processes: probability Pi - transmission L protectsility of -recovery: Pr transmitty time step We could write the network noted corplicitly: $\chi_{i,t+1} = f(\chi_{it}, \chi_{j,t} \in \mathcal{N}(\chi_{i}))$ nightoning node

V/ Wigh dimensional!
Instead, lets make:
Mean field model -reduces
dimension
Take advantage of the fact that nodes
are connected vandomly.
Let N be total number of nodes
Define variables:

$$s = \frac{S}{N} = \frac{succion of nodes}{susc.}$$

 $i = \frac{I}{N} = \frac{faction of nodes that}{susc.}$
 $i = \frac{R}{N} = frontion of nodes that are
 $recovered$$

Probability of having an $S \rightarrow S$ transition at the next time step, i.e. the frection of nodes that $c_0 S \rightarrow S$ is: $S(1 - peipi)^{N-1}$ that ion probability that they stard S

We can write out our transition probabilities as: (note we dropped the t subscripts)

current Statu	Nekt State	Probability of transition
SUSC	SUSC	s(1-peipi) ^{N-1}
Susc	Inf	S(1-(1-peipi) ^{N-1})
Inf	Inf	i (1-pr)

$$r_{t+1} = ipr + r_t$$

= $1 - s_{t+1} - b_{t+1}$

$$\begin{aligned} \text{Pulling this all together:} \\ s_{t+1} &= s_t (1 - p_e i_t p_i)^{N-1} \\ i_{t+1} &= s_t (1 - (1 - p_e i_t p_i)^{N-1}) \\ &+ i_t (1 - p_r) \end{aligned}$$

 $r_{t+1} = r_t + i_t pr$

Binomial Approximation

$$\frac{(1+x)^{p}}{(1+x)^{p}} \xrightarrow{(x < 1 \ xp < c^{-1})}{\text{small}}$$

$$\frac{x < 1 \times xp}{x + xp}$$
Mutiting with the binomial approx
(aoruming that peifi is small and
small $x = N - i$ also):

$$(1 - peitpi)^{N-1} \approx (1 - (N-1))peifi$$

$$s_{t+1} = s_{t} (1 - pei_{t} pi)^{N-1}$$

$$= s_{t} (1 - (N-1))peifi$$

$$= s_{t} - ((N-1))peifi)s_{t} i_{t}$$

$$= s_{t} - ((N-1))peifi)s_{t} i_{t}$$

$$s_{t+1} = s_t - bs_t i_t$$

$$i_{t+1} = s_t(1 - (1 - pei_t pi)^{N-1})$$

$$+ i_t (1 - pr)$$

$$\approx s_t(1 - (1 - (N - 1)pei_t pi))$$

$$+ i_t(1 - pr)$$

$$= (N - 1)pepi s_t i_t + i_t(1 - pr)$$

$$= bs_t i_t + i_t - pr i_t$$

$$S_{t+1} = S_t - bS_t i_t$$

$$i_{b+1} = i_t + bS_t i_t - pr i_t$$

$$r_{t+1} = r_t + pr i_t$$

This looks like an SIR model-itis! also looks like a discretization of the standard ODE version:

 $dS = -\beta SI$ $JI = \beta SI - YI$ JR

$$\frac{dR}{dt} = \delta I$$

a different model:

$$(3) \rightarrow (E) \rightarrow (1) \rightarrow (R)$$

 $s_{t+1} = s_t - bs_t i_t$

wentually the
$$i \neq 0$$
 at
disease must die out. entrank
SIS modul Equilibria G_{a} =
 $S_{t+1} = S_{t} - bS_{t} i_{t} + pri_{t}$ mean field
 $i_{t+1} = i_{t} + bS_{t} i_{t} - pri_{t}$ dor EPE network
 u_{SIS}
under ble lixed proposize:
 $S_{t} + i_{t} = 1$ $S_{t} = 1 - i_{t}$ dynamics
 $we can unite the modul as 1 equation:
 $u_{t+1} = u_{t} + b(1 - u_{t})i_{t} - pri_{t}$
Solve for equilibria by suttry $i_{t+1} = i_{t}$:
 $0 = b S_{t} i_{t} - pr i_{t}$
 $0 = (b S_{t} - pr) i_{t}$
 $0 = (b S_{t} - pr) i_{t}$$

Two presible equilibria:
Disance free EQ. Endemic Eq.
$S_{L} = \frac{Pr}{b}$
$s_{L} = 1$ $i_{T} = 1 - 1^{T}/b$
We are look at stability my noting
that in - is = charge in i
if + then i will grond if - then i will decline
$i_{t+1} - i_t = (bs_t - pr)i_t$
the RHS is to
If we start near the DFE then if
ia Id

bse - pr > 0 then the epidemic will grow If bsy-pr <0 it will dictive at $DFE i_{t} = 0 St = 1$ So near DFE: 656 - pr 2 6 - pr >0 15 40 ²1 that will control growthof disease h >pr $L_0 = \begin{bmatrix} b \\ pr \\ pr \end{bmatrix} > 1$ Ro>1 the diseaset Ro Ro <1 the disease 1 Ro = b · $\frac{1}{pr}$ I.mall -

prem

inefections.

Extra note on why 1/pr = expected number of steps until recovery (we didn't have time in class for this so I figured I'd add it on)