Network SIR Model - Meanfield.

- Grdös-Rung graph
- synduronois time step
- Discase states:

S-susceptible
I-infections
R-recorered

- Processes:
-transmission probability p_{i}
- recoreng: Pr Lprombaility of tracmity timestep
We could write the networkmadel explicitly:

$$
x_{i, t+1}=f\left(x_{i t}, x_{\substack{j, t \\ \text { neighbarin } \\ \text { noder }}}^{\left.\in N\left(x_{i}\right)\right)}\right.
$$

v/ nigh dimensional!
instead, lets male :
Mean field model -reduces
Tale advantage of the fact that nodes are connected randomef.

Let N he total number of nodes Define variables:

$$
\begin{aligned}
& \text { inc variables: } \\
& s=\frac{S^{S}}{N} \begin{array}{r}
\text { numbing } \\
\text { suse c. }
\end{array}=\text { paction of nodes } \\
& \text { that are suse. } \\
& i=\frac{I}{N}=\begin{array}{r}
\text { paction of nodes that } \\
\text { we infectious }
\end{array} \\
& r=\frac{R}{N}=\text { fraction of nodes that are } \\
& \text { recovered }
\end{aligned}
$$

note $r=1-s-i$ since the fractions sum to 1 (population is fixed)

Probability that a susceptible node j is infected by node k is:
 ede exists is infected
Then $\left(1-p_{e} i p_{i}\right)^{N-1}$ is the probability that node j remains susceptible at the next time step.

Probability of having an $S \rightarrow S$ transition at the next time step, i.e. The fraction If nodes that co $S \rightarrow S$ is:

We can write out our transition probubilitics as:
(note we dropped the t sulsceips)

current state	Next state	Probability of transition
Suse	suse	$s\left(1-p_{e} i \rho_{i}\right)^{N-1}$
Suse	lnf	$s\left(1-\left(1-\rho_{e} i \rho_{i}\right)^{N-1}\right)$
lnf	lnf	$i\left(1-p_{r}\right)$

Inf	Rec.	i pr
Re	Rev	$r .1$

Write out the difference equations:

$$
\begin{aligned}
& \text { Write out the difference equations: } \\
& s_{t+1}=s_{t}\left(1-p_{e} i_{t} p_{i}\right)^{N-1}
\end{aligned}
$$

or we could wite:

$$
\begin{aligned}
s_{t+1} & =s_{t} \text { wrens - lass } \\
& =s_{t}-s_{t}\left(1-\left(1-p_{e} i_{t} p_{i}\right)^{N-1}\right) \\
& =s_{t}\left(1-\left(1-\left(1-p_{e} i_{t} p_{i}\right)^{N-1}\right)\right) \\
& \left.=s_{t}\left(1-p_{e} i_{t} p_{i}\right)^{N-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
i_{t+1}= & \text { incoming from } s+\text { stay inf. } \\
= & s_{t}\left(1-\left(1-p_{e} i_{t} p_{i}\right)^{N-1}\right) \\
& +i_{t}(1-p r)
\end{aligned}
$$

$=i_{t}+$ newtraveonissions

- recoveries

$$
\begin{aligned}
r_{t+1} & =i p r+r_{t} \\
& =1-s_{t+1}-i_{t+1}
\end{aligned}
$$

Pulling this all together:

$$
\begin{aligned}
s_{t+1}= & s_{t}\left(1-p_{e} i_{t} p_{i}\right)^{N-1} \\
i_{t+1}= & s_{t}\left(1-\left(1-p_{e} i_{t} p_{i}\right)^{N-1}\right) \\
& +i_{t}(1-p r) \\
r_{t+1}= & r_{t}+i_{t} p r
\end{aligned}
$$

Binomial Approximation

$$
\begin{aligned}
& (1+x)^{p} \quad(x<1 \quad x p \ll 1) \\
& \approx 1 \times x p
\end{aligned}
$$

Rewriting with the binomial approx casoumiry that $\mathrm{Pe}_{e} i_{t} \mathrm{P}_{i}$ is small and small $\times \mathrm{N}-1$ also-):

$$
\begin{aligned}
&\left(1-p_{e} i_{t} p_{i}\right)^{N-1} \approx 1-(N-1) p_{e} i_{t} p_{i} \\
& s_{t+1}=s_{t}\left(1-p_{e} i_{t} p_{i}\right)^{N-1} \\
&=s_{t}\left(1-(N-1) p_{e} i_{t} p_{i}\right) \\
&=s_{t}-(\underbrace{(N-1) p_{e} p_{i}}_{b}) s_{t} i_{t}
\end{aligned}
$$

$$
\begin{aligned}
& s_{t+1}= s_{t}-b s_{t} i_{t} \\
& i_{t+1}= s_{t}\left(1-\left(1-p_{e} i_{t} p_{i}\right)^{N-1}\right) \\
&+i_{t}\left(1-p_{r}\right) \\
& \approx s_{t}\left(1-\left(1-(N-1) p_{e} i_{t} p_{i}\right)\right) \\
&+i_{t}\left(1-p_{r}\right) \\
&= \underbrace{(N-1) p_{e} p_{i} s_{t} i_{t}+i_{t}(1-p r)}_{b} \\
&=b s_{t} i_{t}+i_{t}-p_{r} i_{t} \\
& s_{t+1}= s_{t}-b s_{t} i_{t} \\
& i_{t+1}= i_{t}+b s_{t} i_{t}-p_{r} i_{t} \\
& r_{t+1}= r_{t}+p r i_{t}
\end{aligned}
$$

This looles like an SIR modil-itis! Aloo looles like a diseretization of the standand SDE version:

$$
\begin{aligned}
& \frac{d S}{d t}=-\beta S I \\
& \frac{d I}{d t}=\beta S I-\gamma I \\
& \frac{d R}{d t}=\gamma I
\end{aligned}
$$

adifferment model:
(S) \rightarrow (E) \rightarrow (1) R

$$
s_{t+1}=s_{t}-b s_{t} i_{t}
$$

$$
\begin{aligned}
& e_{t+1}=b_{s t} i_{t}-p_{e} e \\
& i_{t+1}=p_{e} e-p r i \quad e t z .
\end{aligned}
$$

SIR Eyvilibria How can the mean field model help us?
solve for where:

$$
\begin{aligned}
& s_{t+1}=s_{t} \\
& i_{t+1}=i_{t} \\
& r_{t+1}=r_{t}
\end{aligned} \quad\left\{\begin{array}{l}
\text { this is ans } \\
\text { enjilibriven } \\
\text { point for our } \\
\text { nod }
\end{array}\right.
$$

This gives us:
$i_{t}=0$ any set of valves $s_{t}+r_{t}=1$ for s_{1} r that fit this condition will work.
SIR model caul have longtem
eventrally the disease unst die out. antecely state

SIS model Equilibria

$$
\left.s_{t+1}=s_{t}-b s_{t} i_{t}+p r i_{t}\right\}
$$

meanfild

$$
\left.i_{t+1}=i_{t}+b s_{t} i_{t}-p r i_{t}\right\}
$$

br ER nethot w/g1s
note b/c fixed pop siue: deprames

$$
\begin{aligned}
& \text { ote b/c fixedppp-s.e. } \\
& s_{t}+i_{t}=1 \quad s_{t}=1-i_{t}
\end{aligned}
$$

We can wite the nodel as 1 equation:

$$
\text { We can white the model as } \left.1-i_{t}\right) i_{t}-p r i_{t}
$$

Solve for aquilibria ty seltiog $i_{t+1}=i_{t}$:

$$
\begin{aligned}
& 0=b s_{t} i_{t}-p r i_{t} \\
& 0=\underbrace{\left(b s_{t}-p r\right)}_{=0} i_{t}=p r_{b}
\end{aligned}
$$

Two possible equilibria:
Disease free $\& Q$.

$$
\begin{aligned}
& i_{t}=0 \\
& s_{t}=1
\end{aligned}
$$

$$
s_{t}=\operatorname{Pr} / b
$$

$$
i_{t}=1-p r / b
$$

We can loole at stabiityby noting that

$$
\begin{aligned}
& i_{t+1}-i_{t} \\
& \text { if + then } i \text { will crow in } i \\
& \text { if - then } i \text { will decline }
\end{aligned}
$$

$i_{t+1}-i_{t}=\underbrace{\left.b s_{t}-p r\right)}_{\text {controls whether }} i_{t}$ the RHS is tor -

If we start near the DFE then if
$b s_{t}$ - $p r>0$ then the epidemnic will grow

If $b s_{t}-p r<0$ it will declive
at DFE $i_{t}=0 \quad s_{t}=1$
So nean DFE:

$$
\begin{aligned}
& b s_{t}-p r \approx b-p r>0 \\
& v_{1}
\end{aligned}
$$

pewer

$$
b=\underbrace{(N-1) p_{e}}_{\begin{array}{c}
\text { average } \\
\text { deque }
\end{array}} \underbrace{\rho_{i}}_{\begin{array}{c}
p_{0}, b \\
\text { ofravsimission }
\end{array}}
$$

expected ow mher of cases 1 pesoon quenatso in 1 time
step
$\frac{1}{p r}=$ approximater number of time steps we expect to stay infueted.
why? (coms from hasic prohakility
Butanhow-
topethen
$D_{0}=\frac{b}{p r}=\begin{gathered}\text { total caser quenates } \\ b y \\ l \text { infected }\end{gathered}$ by 1 inflated puor over the time

Extra note on why $1 / \mathrm{pr}=$ expected number of steps until recovery (we didn't have time in class for
this so I figured I'd this so I figured lId add it on)

* tale an infected node. probability of recoveng@next time= pr menooglus, so we can write:

$$
E[x]=1+\underset{\substack{\text { stop } \\ \text { if resoroud }}}{p r \times p}+(1-p r) E[x]
$$

$\uparrow \uparrow \stackrel{\text { iftrecored }}{\text { ito }} \uparrow$
timetoreovy have to nom expected tale one soingit value nett step. tine is sames now giver mexuyles
Solve for $E[x]$:

$$
\begin{aligned}
& E[x]\left(1-\left(1-p_{r}\right)\right)=1 \\
& E[x]=1 / p r
\end{aligned}
$$

