
Lecture 14: Introduction 
to parameter estimation

Complex Systems 530  
3/26/20



Outline
• Quick update about lab 

• Today 

• Intro to parameter estimation (for models in general, 
not just ABMs) 

• Some of the challenges involved in using these tools 
for ABMs 

• Next time: Bayesian & sampling based approaches, 
intro to MCMC



Connecting Models with Data
• Depending on parameters, models can give very 

different results 

• How to figure out parameters for model? 

• Direct measurements of parameters often difficult 

• If we have data on what is observed in the real world, 
this may be able to tell us something about what parts 
of parameter space are more realistic? 

• How to connect models with data?



General idea

Model
Variables 

Initial values 
Parameters 
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Parameter estimation goals
• In general—search parameter space to find optimal 

fit to data 
• Or to characterize distribution of parameters that 

matches data

Yay! Multiple Mins Unidentifiability



However
• Parameter estimation is one way to connect models with data—not 

the only one! 

• Just because a model does not precisely fit the data 
quantitatively, does not mean it cannot bring useful insight!  

• Usefulness of models is not just about prediction or data fitting 

• Qualitative patterns are important 

• Often may not have every detail of the mechanism, or may not have 
enough data to characterize fully, but models can be useful to 
reason and get intuition about the system—often moreso than a 
model that ‘fits’ the data better (e.g. think about a mechanistic 
model vs a spline)



Parameter Estimation
• Basic idea: parameters that  

give model behavior that  
more closely matches data  
are ‘best’ or ‘most likely’ 

• Frame this from a statistical  
perspective (inference, regression) 

• Can determine ‘most likely’ parameters or 
distribution, confidence intervals, etc.

t

ca
se

s



Many things can go wrong!
• Data issues - bias, noise, missing data, not enough 

data 

• Model issues 

• Model misspecification 

• Unidentifiability—particularly for complex models 
like ABMs, we can expect that many different 
parameter sets will fit the data equally well



How to frame this statistically?

• Maximum Likelihood Approach 

• Idea: treat our model as a statistical model, where we 
suppose we know the general form of the density 
function (based on the model output) but not the 
parameter values (discuss) 

• Then if we knew the parameters we could calculate 
probability of a particular observation/data:

P z | p( )

data parameters



Maximum Likelihood

• Likelihood Function   

• Re-think the distribution as a function of the data 
instead of the parameters 

• E.g.  

• Find the value of p that maximizes L(p|z) - this is the 
maximum likelihood estimate (MLE) (most likely given 
the data)

P z | p( ) = f z, p( ) = L p | z( )

f z | µ,σ 2( ) = 1
2πσ

exp −
z − µ( )2

2σ 2
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Likelihood Function

Data value
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Maximum Likelihood

• Consistency - with sufficiently large number of 
observations n, it is possible to find the value of p with 
arbitrary precision (i.e. converges in probability to p) 

• Normality - as the sample size increases, the distribution 
of the MLE tends to a Gaussian distribution with mean 
and covariance matrix equal to the inverse of the Fisher 
information matrix 

• Efficiency - achieves CR bound as sample size⟶∞ (no 
consistent estimator has lower asymptotic mean squared 
error than MLE)



Example: deterministic 
mean field model

• E.g. something like the Erdos-Renyi network SIR 
mean field model we derived before: 

• Or you can think of any other simple deterministic 
model if you’d prefer (e.g. some simple CA models 
would also work as the example here)































































































































































































































































































































































































































































































Example: difference equation model 
with Gaussian measurement error

• Model: 

• Suppose data is taken at times 

• Data at ti =  

• Suppose error is gaussian and unbiased, with 
known variance      (can also be considered an 
unknown parameter)

zi = y ti( ) + ei

t1,t2 ,…,tn

σ 2

x(t+ 1) = f(x, t, p)

y(t) = g(x, t, p)



Example: difference equation model 
with Gaussian measurement error

• The measured data     at time i can be viewed as a 
sample from a Gaussian distribution with mean  
y(x, ti,p) and variance  

• Suppose all measurements are independent (is 
this realistic?)
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Example: difference equation model 
with Gaussian measurement error

• Then the likelihood function can be calculated as:

f zi | µ,σ
2( ) = 1

2πσ
exp −

zi − µ( )2

2σ 2
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Example: difference equation model 
with Gaussian measurement error

• Then the likelihood function can be calculated as:

f zi | µ,σ
2( ) = 1

2πσ
exp −

zi − µ( )2

2σ 2
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f zi | y x,ti , p( ),σ 2( ) = 1
2πσ

exp −
zi − y ti , p( )( )2
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model:



Example: difference equation model 
with Gaussian measurement error

• Then the likelihood function can be calculated as:

f zi | µ,σ
2( ) = 1

2πσ
exp −

zi − µ( )2

2σ 2

$

%
&

'

(
)Gaussian PDF:

f zi | y x,ti , p( ),σ 2( ) = 1
2πσ

exp −
zi − y ti , p( )( )2
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Formatted for 
model:

Likelihood function assuming independent observations:

L y ti , p( ),σ 2 | z1,…, zn( ) = f z1,…, zn | y ti , p( ),σ 2( )
= f zi | y ti , p( ),σ 2( )

i=1
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Example: difference equation model 
with Gaussian measurement error

L y ti , p( ),σ 2 | z1,…, zn( ) = 1
2πσ 2
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Example: difference equation model 
with Gaussian measurement error

−LL = − ln 1
2πσ 2
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• It is often more convenient to minimize the 
Negative Log Likelihood (-LL) instead of 
maximizing the Likelihood 

• Log is well behaved, minimization algorithms 
common



Example: difference equation model 
with Gaussian measurement error

−LL = − ln 1
2πσ 2
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Example: difference equation model 
with Gaussian measurement error

−LL = n
2
ln 2π( ) + n ln σ( ) +

zi − y ti , p( )( )2
i=1

n

∑
2σ 2

If    is known, then first two terms are constants & will not be 
changed as p is varied—so we can minimize only the 3rd term 

and get the same answer

min p −LL( ) = min p
zi − y ti , p( )( )2
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Example: difference equation model 
with Gaussian measurement error

• Similarly for denominator: 

• This is just least squares!  

• So, least squares is equivalent to the ML estimator 
when we assume a constant known variance

min p −LL( ) = min p
zi − y ti , p( )( )2
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Maximum Likelihood

• Can calculate other ML estimators for different 
distributions 

• Not always least squares-ish! (mostly not) 

• Although surprisingly, least squares does fairly 
decently a lot of the time



Example - Poisson ML

• For count data (e.g. incidence data), the 
Poisson distribution is often more realistic than 
Gaussian 

• Likelihood function?



Example - Poisson ML
• Model: 

• Data     is assumed to be Poisson with mean  

• Assume all data points are independent 

• Poisson PMF: 

y ti( )zi

f zi | y ti( )( ) = y ti( )zi e− y ti( )

zi !

x(t+ 1) = f(x, t, p)

y(t) = g(x, t, p)



Example - Poisson ML
• Likelihood function:  
 
 
 
 
 
 
 

=
y ti( )zi e− y ti( )

zi !i=1

n
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L y t, p( ) | z1,…, zn( ) = f z1,…, zn | y t, p( )( )

= f zi | y t, p( )( )
i=1
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Poisson ML
• Negative log likelihood: 
 
 
 
 
 
 
 
 

• Last term is constant

−LL = − ln
y ti( )zi e− y ti( )
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Example - Poisson ML
• Poisson ML Estimator: 

• Other common distributions - negative binomial 
(overdispersion), zero-inflated poisson or 
negative binomial, etc.

min p −LL( ) = min p − zi ln y ti( )( ) + y ti( )
i=1

n

∑
i=1

n

∑
#

$%
&

'(



Maximum likelihood for 
deterministic models

• Basic approach for deterministic models - suppose only 
measurement error (otherwise distribution is determined 
by the model stochasticity and measurement error) 

• Data is given by distribution where model output is the 
mean  

• Suppose each time point of data is independent 

• Use PDF/PMF to calculate the likelihood 

• Take the negative log likelihood, minimize this over the 
parameter space



Maximum Likelihood for 
ABMs & other kinds of models

• Can be quite different! 

• May require more computation to evaluate (e.g. 
stochastic models) 

• May also be structured quite differently! (e.g. 
network or individual-based models)



Tiny Network Example

• Data: infection pattern on the network 

• Model: suppose constant probability p of infecting 
along an edge from someone who got sick before 
you 

• What’s the likelihood?



Tiny Network Example
• Data: infection pattern on the network 

• Model: suppose constant probability p of infecting along 
an edge, assuming we start with first case 

• What’s the likelihood? 

• Let’s see how we would calculate  
it for a specific data set 

• L(p,data) = P(susc nodes did not get sick)  
                                       x  P(infected nodes did get sick)



Very (very!) brief intro to 
Bayesian estimation

• Allows one to account for prior information about 
the parameters 

• E.g. previous studies in a similar population 

• Update parameter information based on new data 

• Recall Bayes’ Theorem:

P p | z( ) = P params | data( ) = P z | p( ) ⋅P p( )
P z( )



Very (very!) brief intro to 
Bayesian estimation

P p | z( ) = P params | data( ) = P z | p( ) ⋅P p( )
P z( )

Likelihood
Prior 

distribution

Normalizing constant 
(can be difficult to calculate!)



Bayesian Parameter 
Estimation

• From prior distribution & likelihood distribution, 
determine the posterior distribution of the 
parameter 

• Can repeat this process as new data is available



Bayesian Parameter 
Estimation

• Treats the parameters inherently as distributions 
(belief) 

• Philosophical battle between Bayesian & 
frequentist perspectives 

• Word of caution on choosing your priors 

• Denominator issues - MAP Approach



Sampling-based approaches 
to parameter estimation

• In our maximum likelihood example, we were able 
to write down our likelihood explicitly, in terms of 
equations (e.g. using a normal distribution and the 
model equations) 

• However, for more complex models, or for Bayesian 
estimation, it’s often difficult or impossible to write 
down an equation for the posterior/likelihood/etc.



Sampling-based approaches 
to parameter estimation

• Instead—we can use sampling based approaches 
to sample from the posterior/likelihood—this is 
often more tractable for ABMs and other complex 
models 

• More on this next time!



from XKCD:
http://xkcd.com/1132/

http://xkcd.com/1132/

