Bayesian approaches to parameter estimation

CSCS 530 - Marisa Eisenberg

Timeline

- Lab 4 & project proposal: due April 14
 - Submit lab 4 on Canvas
 - Upload project proposal to google drive (ADD LINK)
- Project proposal comments: April 21
 - Comment on 2 other proposals
- Final Project writeup: Due April 30

Bayesian approaches to parameter estimation

Bayes' Theorem, rewritten for inference problems:

$$P(p \mid z) = P(params \mid data) = \frac{P(z \mid p) \cdot P(p)}{P(z)}$$

- Allows one to account for prior information about the parameters
 - E.g. previous studies in a similar population
- Update parameter information based on new data

Bayesian approaches to parameter estimation

Normalizing constant (can be difficult to calculate!)

$$P(z) = \int_{p} P(z, p) dp$$

Denominator term - P(z)

The denominator term:

$$P(z) = \int_{p} P(z, p) dp$$

- Probability of seeing the data z from the model, over all parameter space
- Often doesn't have a closed form solution—evaluating numerically can also be difficult
 - E.g. if p is a three dimensional, then if we took 1000 grid points in each direction, the grid representing the function to be integrated has $1000^3 = 10^9$ points

Maximum a posteriori (MAP) estimation

Instead of working with the full term, just use the numerator:

$$P(p|z) = \frac{P(z|p) \cdot P(p)}{P(z)}$$

- The denominator is a constant, so the numerator is proportional to the posterior we are trying to estimate
- Then the ${\bf p}$ which yields $\max(P(z|p)\cdot P(p))$ is the same ${\bf p}$ that maximizes P(p|z)
- If we only need a point estimate, MAP gets around needing to estimate P(z)

Bayesian Parameter Estimation

 Can think of Bayesian estimation as a map, where we update the prior to a new posterior based on data

Conjugate Priors

- For a likelihood distribution, there may be a distribution family for our prior, which makes the posterior and prior come from the same type of distribution
- This is called a conjugate prior for that likelihood
- For example, a gamma distribution is the conjugate prior for a Poisson likelihood.

$$P(p) \longrightarrow \boxed{ \times \frac{P(z|p)}{P(z)} } \longrightarrow P(p|z)$$
 Gamma Poisson

Why conjugate priors?

- If we have a conjugate prior, we can calculate the posterior directly from the likelihood and the prior handles the issue with calculating the denominator P(z)
- Also makes it easier to repeat Bayesian estimation making the posterior the prior and updating as new data comes in

Conjugate prior example: coin flip

- Let z be the data—i.e. the coin flip outcome, z = 1 if it's heads, z = 0 if it's tails
- Let θ be the probability the coin shows heads
- Likelihood: Bernoulli distribution

$$P(z|\theta) = \theta^z (1-\theta)^{1-z}$$

Conjugate prior example: coin flip

Conjugate prior: beta distribution

$$P(\theta|\alpha,\beta) = \frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{\int_0^1 \theta^{\alpha-1}(1-\theta)^{\beta-1}d\theta}$$

• a and β are **hyperparameters** - shape parameters that describe the distribution of the model parameters

How does the posterior work out to be a beta distribution as well?

$$P(\theta|z) = \frac{P(z|\theta)P(\theta|\alpha,\beta)}{P(z)}$$

$$= \frac{\theta^{z}(1-\theta)^{1-z} \frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{\int_{0}^{1}\theta^{\alpha-1}(1-\theta)^{\beta-1}d\theta}}{P(z)}$$

$$= \frac{\theta^{z}(1-\theta)^{1-z} \frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{\int_{0}^{1}\theta^{\alpha-1}(1-\theta)^{\beta-1}d\theta}}{\int_{0}^{1}P(z,\theta)d\theta}$$

$$= \frac{\theta^{z}(1-\theta)^{1-z} \frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{\int_{0}^{1}\theta^{\alpha-1}(1-\theta)^{\beta-1}d\theta}}{\int_{0}^{1}\theta^{\alpha-1}(1-\theta)^{\beta-1}d\theta}$$

$$= \frac{\theta^{z}(1-\theta)^{1-z} \frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{\int_{0}^{1}\theta^{\alpha-1}(1-\theta)^{\beta-1}d\theta}}{\int_{0}^{1}\theta^{z}(1-\theta)^{1-z}d\theta}$$

Etc.—but you can see it will work out to be beta distributed

Coin flip example - Posterior

Beta distributed with posterior hyperparameters:

$$\alpha_{post} = \alpha + z$$
 $\beta_{post} = \beta + 1 - z$

If we take multiple data points, this works out to be:

$$\alpha_{post} = \alpha + \sum_{i=1}^{n} z_i \qquad \beta_{post} = \beta + n - \sum_{i=1}^{n} z_i$$

Sampling methods: approximating a distribution

- What if we want priors that aren't conjugate? Or what if our likelihood is more complicated and it isn't clear what the conjugate prior is?
- Now we need some way to get the posterior, even though the denominator term is annoying
- How to approximate the distribution?

- Sampling-based methods—in particular, Markov chain Monte Carlo (MCMC)
- Also used for many other things! Can approximate distributions more generally—used in cryptography, calculating neutron diffusion, all sorts of things

- MCMC is a method for sampling from a distribution
- Markov chain: a type of (discrete) Markov process
 - Markov: memoryless, i.e. what happens at the next step only depends on the current step
- Monte Carlo methods are a class of algorithms that use sampling/randomness—often used to solve deterministic problems (such as approximating an integral)

- Main idea: make a Markov chain that converges to the distribution we're trying to sample from (the posterior)
 - The Markov chain will have some transient dynamics (burn-in), and then reach an equilibrium distribution which is the one we're trying to approximate

- Many MCMC methods are based on random walks
 - Set up walk to spend more time in higher probability regions
- Typically don't need the actual distribution for this, just something proportional—so we can get the relative probability density at two points
 - So we don't need to calculate P(z)! We can just use the numerator

Example

Suppose two parameters, with likelihood x prior:

Sample path

Sample path

Sample path

Sampled density

Can also get marginals:

Example: Metropolis Algorithm

- Idea is to 'walk' randomly through parameter space, spending more time in places that are higher probability that way, the overall distribution draws more from higher probability spots
- Setup—we need
 - A function f(p) proportional to the distribution we want to sample, in our case $f(p) = P(z|p) \cdot P(p)$
 - A proposal distribution (how we choose the next point from the current one) - more on this in a minute

Metropolis Algorithm

- Start at some point in parameter space
- For each iteration
 - Propose a new random point p_{next} based on the current point p_{curr} (using the proposal distribution)
 - Calculate the acceptance ratio, $\alpha = f(p_{next})/f(p_{curr})$
 - If $\alpha \geq 1$, the new point is as good or better—accept
 - If $\alpha < 1$, accept with probability α

Why does this recover the posterior distribution? Key is the acceptance ratio α

Why does this recover the posterior distribution?

- The acceptance ratio $\alpha = f(p_{next})/f(p_{curr})$
- Note it is equal to $P(p_{next}|z)/P(p_{curr}|z)$ since the denominators cancel
- Suppose we're at the peak
 - If $f(p_{curr}) = 2 f(p_{next})$, then $\alpha = 1/2$, i.e. we accept with 1/2 probability
- Overall, will mean the number of samples we take from a region will be proportional to the height of the distribution

Proposal Distribution

- A distribution that lets us choose our next point randomly from our current one
- For Metropolis algorithm, must be symmetric
- Common to choose a normal distribution centered on current point
- Width (SD) of normal = proposal width
 - Choice of proposal width can strongly affect how the Markov chain behaves, how well it converges, mixes, etc.

Example

- Model: normal distribution $\mathcal{N}(\mu, \sigma)$
 - Suppose σ is known, μ to be estimated

• Likelihood:
$$P(z_i | \mu, 1) = f(z_i | \mu, 1) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(z-\mu)^2}{2}}$$
 $P(z | \mu) = \prod_{i=1}^n f(z_i | \mu, 1)$

• Prior:
$$\mu \sim \mathcal{N}(0,3)$$

Suppose we have 20 data points

Example - proposal width: SD = 0.5

Goldilocks problem: What happens if we change the proposal width?

Example: prior, likelihood, and posterior (all scaled)

Assessing convergence

- MCMC methods will let us sample the posterior once they've converged to their equilibrium distribution
- How to know once we've reached equilibrium?
 - Visual evaluation of burn-in
 - Autocorrelation of elements in chain k iterations apart
- Also approaches to use in combination with/instead of burn-in: start with MAP estimation, multiple chains, etc.

Assessing convergence

- Often done visually
- Although, this can be misleading:

Chain shifts after 130,000 iterations due to a local min in sum of squares (Example from R. Smith, *Uncertainty Quantification*)

Metropolis & Metropolis-Hastings Caveats

- Assessing convergence—how long is burn-in?
 - What about when you have unidentifiability or multiple minima?
- Correlated samples
- How to choose a proposal width? (~size of next jump)

Wide range of methods

- Metropolis-Hastings
- Gibbs sampling
- Variations of the above: prior optimization, multi-start, adaptive methods, delayed rejection
 - DRAM (Delayed Rejection Adaptive Metropolis-Hastings)
- Many more!

Examples

American Journal of Epidemiology

The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Vol. 186, No. 12 DOI: 10.1093/aje/kwx217 Advance Access publication: June 9, 2017

Practice of Epidemiology

Application of an Individual-Based Transmission Hazard Model for Estimation of Influenza Vaccine Effectiveness in a Household Cohort

Joshua G. Petrie*, Marisa C. Eisenberg, Sophia Ng, Ryan E. Malosh, Kyu Han Lee, Suzanne E. Ohmit, and Arnold S. Monto

Table 2. Observed and Individual-Based Transmission Hazard Model–Predicted Influenza A(H3N2) Infections According to Infection Source, Age, Presence of High-Risk Health Condition, and Influenza Vaccination Status, Household Influenza Vaccine Effectiveness Study, Ann Arbor, Michigan, 2010–2011

Characteristic	Observed Data			TH Model Predictions				
	No. of Cases (n = 58)	Total No. Exposed $(n = 1,441)$	% Positive	Median No. of Cases	95% Crl	% Positive	95% CrI	<i>P</i> Value ^a
Community-acquired	41	1,441	2.8	43	31,55	3.0	2.2, 3.8	0.70
Household-acquired	17	111	15.3	18	9,30	13.2	6.6, 20.5	
Secondary	N/O	N/O		15	7, 24			
Tertiary	N/O	N/O		3	0, 9			
Quaternary	N/O	N/O		0	0, 0			
Age category, years								0.80
<9	32	468	6.8	36	22,50	7.7	4.7, 10.7	
9–17	8	371	2.2	8	3, 14	2.2	0.8, 3.8	
≥18	18	602	3.0	18	9,27	3.0	1.5, 4.5	
Documented high-risk health condition								0.49
Any	6	162	3.7	5	1, 11	3.1	0.6, 6.8	
None	52	1,279	4.1	56	38, 76	4.4	3.0, 5.9	
Documented influenza vaccination ^b								0.45
Yes	33	864	3.8	32	19, 48	3.7	2.2, 5.6	
No	25	577	4.3	29	16,44	5.0	2.8, 7.6	
Overall model predictions				62	42,82	4.3	2.9, 5.7	

Abbreviations: Crl, credible interval; N/O, not observed; TH, transmission hazard.

^a Simulation-based χ^2 test.

b At least 1 dose of 2010–2011 influenza vaccine documented in the electronic medical record or state registry; vaccination must have occurred ≥14 days prior to illness onset for influenza A(H3N2) infected subjects.

Sample Importance Resampling and Approximate Bayesian Computation

- MCMC can be slow—another approach to getting a rough sample of parameter space that matches the data is Sample Importance Resampling
 - Can be used with the true likelihood
 - Or with an approximating function (approximate Bayesian computation)
 - E.g. may take a threshold based on distance between the model and observed data

Basic idea

- Draw a sample of parameters from your prior (either drawing at random or with LHS/sobol/etc. sampling)
- Run the model for each sample
- Calculate the likelihood value (or approximation of it) for each sample
- Weight the samples based on the likelihood
- Resample to get the final set of samples

Example: Norovirus model

Havumaki et al. 2020

Resampled Daycare Attack Rates vs. Outbreak Durations

Readings

 Menzies NA, Soeteman DI, Pandya A, Kim JJ. Bayesian methods for calibrating health policy models: a tutorial. PharmacoEconomics. 2017 Jun 1;35(6):613-24.