Bayesian approaches to parameter estimation

CSCS 530 - Marisa Eisenberg

Timeline

- Lab 4 \& project proposal: due April 14
- Submit lab 4 on Canvas
- Upload project proposal to google drive (ADD LINK)
- Project proposal comments: April 21
- Comment on 2 other proposals
- Final Project writeup: Due April 30

Bayesian approaches to parameter estimation

- Bayes' Theorem, rewritten for inference problems:

$$
P(p \mid z)=P(\text { params } \mid \text { data })=\frac{P(z \mid p) \cdot P(p)}{P(z)}
$$

- Allows one to account for prior information about the parameters
- E.g. previous studies in a similar population
- Update parameter information based on new data

Bayesian approaches to parameter estimation

Normalizing constant
(can be difficult to calculate!)

$$
P(z)=\int_{p} P(z, p) d p
$$

Denominator term - $\mathrm{P}(\mathrm{z})$

- The denominator term:

$$
P(z)=\int_{p} P(z, p) d p
$$

- Probability of seeing the data z from the model, over all parameter space
- Often doesn't have a closed form solution-evaluating numerically can also be difficult
- E.g. if p is a three dimensional, then if we took 1000 grid points in each direction, the grid representing the function to be integrated has $1000^{3}=10^{9}$ points

Maximum a posteriori (MAP) estimation

- Instead of working with the full term, just use the numerator:

$$
P(p \mid z)=\frac{P(z \mid p) \cdot P(p)}{P(z)}
$$

- The denominator is a constant, so the numerator is proportional to the posterior we are trying to estimate
- Then the \boldsymbol{p} which yields $\max (P(z \mid p) \cdot P(p))$ is the same \boldsymbol{p} that maximizes $P(p \mid z)$
- If we only need a point estimate, MAP gets around needing to estimate $P(z)$

Bayesian Parameter Estimation

- Can think of Bayesian estimation as a map, where we update the prior to a new posterior based on data

$$
\begin{aligned}
& P(p) \\
& \text { Prior } \longrightarrow \times \frac{P(z \mid p)}{P(z)} \\
& \text { Likelihood/P(z) }
\end{aligned} \rightarrow \begin{gathered}
\text { Posterior }
\end{gathered}
$$

Conjugate Priors

- For a likelihood distribution, there may be a distribution family for our prior, which makes the posterior and prior come from the same type of distribution
- This is called a conjugate prior for that likelihood
- For example, a gamma distribution is the conjugate prior for a Poisson likelihood.

Why conjugate priors?

- If we have a conjugate prior, we can calculate the posterior directly from the likelihood and the priorhandles the issue with calculating the denominator $\mathrm{P}(\mathrm{z})$
- Also makes it easier to repeat Bayesian estimationmaking the posterior the prior and updating as new data comes in

Conjugate prior example: coin flip

- Let z be the data-i.e. the coin flip outcome, $z=1$ if it's heads, $z=0$ if it's tails
- Let θ be the probability the coin shows heads
- Likelihood: Bernoulli distribution

$$
P(z \mid \theta)=\theta^{z}(1-\theta)^{1-z}
$$

Conjugate prior example: coin flip

- Conjugate prior: beta distribution

$$
P(\theta \mid \alpha, \beta)=\frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{\int_{0}^{1} \theta^{\alpha-1}(1-\theta)^{\beta-1} d \theta}
$$

- \quad a and β are hyperparameters - shape parameters that describe the distribution of the model parameters

How does the posterior work out to be a beta distribution as well?

$$
\begin{aligned}
P(\theta \mid z) & =\frac{P(z \mid \theta) P(\theta \mid \alpha, \beta)}{P(z)} \\
& =\frac{\theta^{z}(1-\theta)^{1-z} \frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{\int_{0}^{1} \theta^{\alpha-1}(1-\theta)^{\beta-1} d \theta}}{P(z)} \\
& =\frac{\theta^{z}(1-\theta)^{1-z} \frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{\int_{0}^{1} \theta^{\alpha-1}(1-\theta)^{\beta-1} d \theta}}{\int_{0}^{1} P(z, \theta) d \theta} \\
& =\frac{\theta^{z}(1-\theta)^{1-z} \frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{\int_{0}^{1} \theta^{\alpha-1}(1-\theta)^{\beta-1} d \theta}}{\int_{0}^{1} \theta^{z}(1-\theta)^{1-z} d \theta}
\end{aligned}
$$

Etc. - but you can see it will work out to be beta distributed

Coin flip example - Posterior

- Beta distributed with posterior hyperparameters:

$$
\alpha_{\text {post }}=\alpha+z \quad \beta_{\text {post }}=\beta+1-z
$$

- If we take multiple data points, this works out to be:

$$
\alpha_{\text {post }}=\alpha+\sum_{i=1}^{n} z_{i} \quad \quad \beta_{\text {post }}=\beta+n-\sum_{i=1}^{n} z_{i}
$$

Sampling methods: approximating a distribution

- What if we want priors that aren't conjugate? Or what if our likelihood is more complicated and it isn't clear what the conjugate prior is?
- Now we need some way to get the posterior, even though the denominator term is annoying
- How to approximate the distribution?

Markov Chain Monte Carlo (MCMC)

- Sampling-based methods-in particular, Markov chain Monte Carlo (MCMC)
- Also used for many other things! Can approximate distributions more generally - used in cryptography, calculating neutron diffusion, all sorts of things

Markov Chain Monte Carlo (MCMC)

- MCMC is a method for sampling from a distribution
- Markov chain: a type of (discrete) Markov process
- Markov: memoryless, i.e. what happens at the next step only depends on the current step
- Monte Carlo methods are a class of algorithms that use sampling/randomness-often used to solve deterministic problems (such as approximating an integral)

Markov Chain Monte Carlo (MCMC)

- Main idea: make a Markov chain that converges to the distribution we're trying to sample from (the posterior)
- The Markov chain will have some transient dynamics (burn-in), and then reach an equilibrium distribution which is the one we're trying to approximate

Markov Chain Monte Carlo (MCMC)

- Many MCMC methods are based on random walks
- Set up walk to spend more time in higher probability regions
- Typically don't need the actual distribution for this, just something proportional - so we can get the relative probability density at two points
- So we don't need to calculate $P(z)$! We can just use the numerator

Example

- Suppose two parameters, with likelihood x prior:

Sample path

Sample path

Sample path

Sampled density

Can also get marginals:

parameter 1

Example: Metropolis Algorithm

- Idea is to 'walk' randomly through parameter space, spending more time in places that are higher probability that way, the overall distribution draws more from higher probability spots
- Setup-we need
- A function $f(p)$ proportional to the distribution we want to sample, in our case $f(p)=P(z \mid p) \cdot P(p)$
- A proposal distribution (how we choose the next point from the current one) - more on this in a minute

Metropolis Algorithm

- Start at some point in parameter space
- For each iteration
- Propose a new random point $p_{n e x t}$ based on the current point $p_{\text {curr }}$ (using the proposal distribution)
- Calculate the acceptance ratio, $\alpha=f\left(p_{\text {next }}\right) / f\left(p_{\text {curr }}\right)$
- If $\alpha \geq 1$, the new point is as good or better-accept
- If $\alpha<1$, accept with probability α

What does the metropolis algorithm do?

Why does this recover the posterior distribution? Key is the acceptance ratio α

We want the amount of time spent here

Acceptance ratio = ratio of heights

Why does this recover the posterior distribution?

- The acceptance ratio $\alpha=f\left(p_{\text {next }}\right) / f\left(p_{\text {curr }}\right)$
- Note it is equal to $P\left(p_{\text {next }} \mid z\right) / P\left(p_{\text {curr }} \mid z\right)$ since the denominators cancel
- Suppose we're at the peak
- If $\mathrm{f}\left(\mathrm{p}_{\text {curr }}\right)=2 \mathrm{f}($ (Pnext $)$, then $\alpha=1 / 2$, i.e. we accept with 1/2 probability
- Overall, will mean the number of samples we take from a region will be proportional to the height of the distribution

Proposal Distribution

- A distribution that lets us choose our next point randomly from our current one
- For Metropolis algorithm, must be symmetric
- Common to choose a normal distribution centered on current point
- Width (SD) of normal = proposal width
- Choice of proposal width can strongly affect how the Markov chain behaves, how well it converges, mixes, etc.

Example

- Model: normal distribution $\mathcal{N}(\mu, \sigma)$
- Suppose σ is known, μ to be estimated
- Likelihood: $P\left(z_{i} \mid \mu, 1\right)=f\left(z_{i} \mid \mu, 1\right)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{\varepsilon-x^{2}}{2}} \quad P(z \mid \mu)=\prod_{i=1}^{n} f\left(z_{i} \mid \mu, 1\right)$
- Prior: $\mu \sim \mathcal{N}(0,3)$

- Suppose we have 20 data points

Example - proposal width: $\mathrm{SD}=0.5$

Goldilocks problem:

What happens if we change the proposal width?

Example: prior, likelihood, and posterior (all scaled)

Assessing convergence

- MCMC methods will let us sample the posterior once they've converged to their equilibrium distribution
- How to know once we've reached equilibrium?
- Visual evaluation of burn-in
- Autocorrelation of elements in chain k iterations apart
- Also approaches to use in combination with/instead of burn-in: start with MAP estimation, multiple chains, etc.

Assessing convergence

- Often done visually
- Although, this can be misleading:

Chain shifts after 130,000 iterations due to a local min in sum of squares (Example from R. Smith, Uncertainty Quantification)

Metropolis \& Metropolis-Hastings Caveats

- Assessing convergence-how long is burn-in?
- What about when you have unidentifiability or multiple minima?
- Correlated samples
- How to choose a proposal width? (~size of next jump)

Wide range of methods

- Metropolis-Hastings
- Gibbs sampling
- Variations of the above: prior optimization, multi-start, adaptive methods, delayed rejection
- DRAM (Delayed Rejection Adaptive MetropolisHastings)
- Many more!

Examples

Practice of Epidemiology

Application of an Individual-Based Transmission Hazard Model for Estimation of Influenza Vaccine Effectiveness in a Household Cohort

Joshua G. Petrie*, Marisa C. Eisenberg, Sophia Ng, Ryan E. Malosh, Kyu Han Lee, Suzanne E. Ohmit, and Arnold S. Monto

Table 2. Observed and Individual-Based Transmission Hazard Model-Predicted Influenza A(H3N2) Infections According to Infection Source, Age, Presence of High-Risk Health Condition, and Influenza Vaccination Status, Household Influenza Vaccine Effectiveness Study, Ann Arbor, Michigan, 2010-2011

Characteristic	Observed Data			TH Model Predictions				Value ${ }^{a}$
	$\begin{aligned} & \text { No. of Cases } \\ & (n=58) \end{aligned}$	Total No. Exposed $(n=1,441)$	\% Positive	Median No. of Cases	$\begin{gathered} 95 \% \\ \mathrm{CrI} \end{gathered}$	\% Positive	95\% CrI	
Community-acquired	41	1,441	2.8	43	31,55	3.0	2.2, 3.8	0.70
Household-acquired	17	111	15.3	18	9,30	13.2	6.6,20.5	
Secondary	N/O	N/O		15	7,24			
Tertiary	N/O	N/O		3	0,9			
Quaternary	N/O	N/O		0	0, 0			
Age category, years								0.80
<9	32	468	6.8	36	22,50	7.7	4.7, 10.7	
9-17	8	371	2.2	8	3,14	2.2	0.8, 3.8	
≥ 18	18	602	3.0	18	9,27	3.0	1.5, 4.5	
Documented high-risk health condition								0.49
Any	6	162	3.7	5	1,11	3.1	0.6,6.8	
None	52	1,279	4.1	56	38,76	4.4	3.0, 5.9	
Documented influenza vaccination ${ }^{\text {b }}$								0.45
Yes	33	864	3.8	32	19,48	3.7	2.2, 5.6	
No	25	577	4.3	29	16,44	5.0	2.8,7.6	
Overall model predictions				62	42, 82	4.3	2.9, 5.7	

Abbreviations: Crl, credible interval; N / O, not observed; TH , transmission hazard.
${ }^{\text {a }}$ Simulation-based χ^{2} test.
${ }^{\text {b }}$ At least 1 dose of 2010-2011 influөnza vaccine documented in the electronic medical record or state registry; vaccination must have occurred ≥ 14 days prior to illness onset for influenza $A(H 3 N 2)$ infected subjects.

Sample Importance Resampling and Approximate Bayesian Computation

- MCMC can be slow - another approach to getting a rough sample of parameter space that matches the data is Sample Importance Resampling
- Can be used with the true likelihood
- Or with an approximating function (approximate Bayesian computation)
- E.g. may take a threshold based on distance between the model and observed data

Basic idea

- Draw a sample of parameters from your prior (either drawing at random or with LHS/sobol/etc. sampling)
- Run the model for each sample
- Calculate the likelihood value (or approximation of it) for each sample
- Weight the samples based on the likelihood
- Resample to get the final set of samples

Example: Norovirus model

Havumaki et al. 2020

Resampled Daycare Attack Rates vs. Outbreak Durations

Readings

- Menzies NA, Soeteman DI, Pandya A, Kim JJ. Bayesian methods for calibrating health policy models: a tutorial. PharmacoEconomics. 2017 Jun 1;35(6):613-24.

