| ecture 5: Introduction
to Cellular Automata

Complex Systems 530
1/28/20



What 1s a cellular
automaton”?

 Automata: "a theoretical machine that changes its
internal state based on inputs and its previous
state” (usually finite and discrete) - Sayama p.185

* Cellular automata: automata on a regular spatial
grid, that update state based on their neighbors’
states, using a state transition function

* Usually synchronous, discrete in time & space,
often deterministic (but not always!)
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Figure 11.1: Schematic illustration of how cellular automata work.

Sayama p. 187 (Chp. 11)




Cellular automata

* Cellular automata can generate highly nonlineatr,
even seemingly random behavior

* Much more complexity than one might expect from
simple rules—emergent behavior

* Jo explore this, let's start with an even ‘simpler’ type
of cellular automata—1-dimensional CA and some
of the classic work of Stephen Wolfram



1-dimensional CA

* We can think of our grid as a string or line of cells

* Finite sequence - 1 row of cells, so everyone
has 2 neighbors except the end points

* Ring - all cells have 2 neighbors

* Infinite sequence - an infinite number of cells
arranged in a row



Finite sequence 1D CA

o Start with a 3-cell neighborhood (left, self, right)

* \We can fully specity our CA by listing all the
possible neighborhood configurations and saying
what happens to the center cell, for example:

prev | 111 | 110 | 101 | 100 | 011 | 010 | 001 | 00O
next 0 0 1 1 0 0 1 0

* We can name our CA by translating the “next” row
from binary to decimal: this is Rule 50!
(256 total possible CAs of this type)

Downey, Think Complexity (Chp. 6)



Rule 50
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Figure 6.1: Rule 50 after 10 time steps.

Downey, Think Complexity (Chp. 6)



Rule 30

rule 30
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What happens it we keep going?

http://mathworld.wolfram.com/Rule30.html
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Woltram’s CA Classification

* CA can produce surprisingly complex behavior

 Wolfram classification - 4 classes of 1D CA

* Class | — almost all initial conditions evolve to a
homogeneous state, any initial randomness is

lost (e.g. Rule 0)

* Class Il - Simple pattern, stable,

osclllating, nested structure

(e.g. Rule 18)

Downey, Think Complexity (Chp. 6)

Figure 6.3: Rule 18 after 64 steps.



Woltram’s CA Classification

* Class lll - CAs that produce
seemingly random or chaotic

patterns

* Can produce sequences difficult
to distinguish statistically from
random, though the underlying
process Is deterministic

* Class lll CAs typically do not Figure 6. Rule 30 afer 100 time stps.
produce long-lasting structures
(persisting over many time
steps)



Woltram’s CA Classification

e Class IV - Evolve In

complex ways that
iInvolve a mix of “chaotic”

and “ordered” (Class |l
and Class IlI)

 Have the potential to

th at p e rS | St Over m any Figure 6.5: Rule 110 after 100 time steps.
time steps

Downey, Think Complexity (Chp. 6)



https://en.wikipedia.org/wiki/CeIquar_automaton
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“Spaceships”

Figure 6.6: Rule 110 with random initial conditions and 600 time steps.
Downey, Think Complexity (Chp. 6)



Class |V CA’'s and
computabpllity

* Rule 110 has been proved to be computationally
universal, i.e. Turing complete (Cook M.,1998)

S0 is Conway’s Game of Life (classic 2D CA), and
others

* Such CA can be used to compute any computable
function (discuss Church-Turing Thesis)

* Wolfram'’s Conjecture: Every Class IV CA is Turing
complete”

Downey, Think Complexity (Chp. 6), Wolfram’s A New Kind of Science



Cellular Automata

Dimensionality - How many dimensions?

Boundaries - none (infinite domain), periodic
(wrapped), cut-off (edge cells have fewer
neighbors), fixed (edge cells take a fixed state)

Grid size
Grid type - for 2D and higher;

square is typical (& will be o
our focus), but can do others!

https://en.wikipedia.org/wiki/Cellular_automaton



Cellular Automata

State Set - binary, n-ary”
Initial conditions - single cell active, random, etc.

Neighborhood - queen/rook (Moore/Von
Neumann), neighborhood radius

Rules - totalistic (depends only on sum over
neighborhood, e.g. majority rule), symmetric (e.g.
state transition is the same up to rotation)




CA Notation

St_|_1($) — F( ( -+ da?()) ( -+ diEl) (33 -+ d,il?n_l))

e s¢;(x) is the state of cell x at time t
* N ={dxg,dz1,...,dx,_1}1S the neighborhood

 Neighborhood usually defined as cells within a
given radius r of x



Parity Rule

Sta1(x Z r + dx;) mod k

* Based on the mod ksum of neighborhood values
(where k is the number of states)

* For binary CA, means they turn on/off based on if
sum is even/odd

Time= 5 Time=10 Time=15 Time=20 Time=25 Time=30



Conway’s Game of Life

Possibly the most classic/well-known CA

Large community of researchers/hobbyists, helped
kick-start the field of ‘artificial lite’

Produces enormous range of interesting, non-trivial
behaviors

Turing-complete



Conway’s Game of Lie

* Queen neighborhood (Moore neighborhood)

* A dead cell becomes alive if surrounded by exactly
3 live cells

* Aliving cell remains alive it surrounded by 2 or 3
living cells, otherwise it dies (either due to over- or
underpopulation)



Conway’s Game of Life
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Figure 11.6: Typical behavior of the most well-known binary CA, the Game of Life.
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Conway’s Game of Life

* Epic collection of Conway’s Game of Life patterns:
https://youtu.be/C2vglCifQawE?t=70

* Web version to try: https://playgameoflife.com

* ca-gameotlite.py in PyCX


https://youtu.be/C2vgICfQawE?t=70
https://playgameoflife.com

Applications of CA &
real-world examples

Forest fire models/disease epidemics
Sand heaps/avalanches
Majority rule and voter models

Ditfusion-limited aggregation (DLA), percolation, lattice
models of materials

And many more—some more realistic than others

Many ABMs can be viewed as CA, or near-CA (e.qg. if we
allow probabilistic rather than deterministic rules)



CA on seashells

* Conus textile appears to operate with Rule 30 (or
close to Iit)




CA on lizard scales

Juvenile
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https://www.nature.com/articles/nature22031
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CA Dynamics

* Not always easy to interpret! Can have many
patterns, as we saw with Game of Life, etc.

* However, sometimes there are major overall
patterns that we can see



Phase transitions/
bifurcations

* A phase transition is a “transition of macroscopic
properties of a collective system that occurs when
its environmental or internal conditions are varied”

* More generally, we often see bifurcations/

gualitative changes in behavior as we move across
parameter space



What are bifurcations”

* A bifurcation is a qualitative change in behavior as
parameters are varied

* The parameter value where this change happens
s called a bifurcation point

* Can create or destroy fixed points, change
stablility, induce oscillations, & more



Qualitative changes in
pbehavior: population collapse

Advanced fishing trawlers
introduced in 50’s/60’s

Cod fishery collapse

1992 moratorium = 1992

300,000
. 200,000
However, still not recovered -

(only 10-33% of original stock)

What happened? Year

http://www.nature.com/nclimate/journal/v1/n4/pdf/nclimate1146.pdf



Qualitative changes in
pbehavior

Development of resistance in bacteria”? Biturcation or
just multiple equilibria”

Onset of cancer—can think of as a bifurcation from
controlled growth & death (equilibrium) to uncontrolled
growth

Wide range of other signaling mechanisms controlling
cell dynamics can be framed this way (cell cycling,
apoptosis, & more)

Switches between brain states—e.g. sleep, epilepsy
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Not Just temporal changes:
vegetation patterns!

* Pattern formation in vegetation

* Changes in elevation/moisture/etc. can
cause surprising changes in plant patterns

across space!
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Vegetation patterns



https://www.google.com/maps/@11.1596025,28.2570965,8746m/data=!3m1!1e3
http://www.apple.com
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etation patterns

Critical transition
from a self-organized
patchy state to a
barren state

Mean vegetation biomass —>

Dryness of climate —>»

Scheffer et al., 2009 - http://www.nature.com/nature/journal/v461/n7260/full/nature08227.html



Disease dynamics

* The most classic bifurcation point in infectious
disease epidemiology: Ro =1

* When Ro < 1 the disease-free equilibrium (DFE)
s stable (outbreak dies out)

* When Ro > 1, it Is unstable (epidemic!)
* Basically all intervention efforts & vaccine

campaigns are trying to push us across a
bifurcation point to eliminate disease



CA models with phase
transitions/bifurcations

* Many examples—and even more when we
consider ABMs more generally (e.g. Schelling, etc.)

* [ry out together:
* Forest fire/percolation model
* Host pathogen model

* Other useful concepts from dynamical systems:
basins of attraction, bistability, etc.



For next time...

* Reading
* Sayama Chapter 11
* Think Complexity Chapter 6

o We'll discuss 2D CA, how to build CA, variations on
CA, and theory for how to analyze the complexity
and dynamics of CA



