
Lecture 5: Introduction
to Cellular Automata

Complex Systems 530  
1/28/20

What is a cellular
automaton?

• Automata: “a theoretical machine that changes its
internal state based on inputs and its previous
state” (usually finite and discrete) - Sayama p.185

• Cellular automata: automata on a regular spatial
grid, that update state based on their neighbors’
states, using a state transition function

• Usually synchronous, discrete in time & space,
often deterministic (but not always!)

11.1. DEFINITION OF CELLULAR AUTOMATA 187

Neighborhood

State set

{ , }

T
C R
B

L

State-transition function
C T R B L C T R B L C T R B L C T R B L

Configulation
at time t

Configulation
at time t+1

Figure 11.1: Schematic illustration of how cellular automata work.

Figure 11.2: Examples of neighborhoods often used for two-dimensional CA. Left: von
Neumann neighborhood. Right: Moore neighborhood.

Sayama p. 187 (Chp. 11)

Cellular automata
• Cellular automata can generate highly nonlinear,

even seemingly random behavior

• Much more complexity than one might expect from
simple rules—emergent behavior

• To explore this, let’s start with an even ‘simpler’ type
of cellular automata—1-dimensional CA and some
of the classic work of Stephen Wolfram

1-dimensional CA
• We can think of our grid as a string or line of cells

• Finite sequence - 1 row of cells, so everyone
has 2 neighbors except the end points

• Ring - all cells have 2 neighbors

• Infinite sequence - an infinite number of cells
arranged in a row

Finite sequence 1D CA
• Start with a 3-cell neighborhood (left, self, right)

• We can fully specify our CA by listing all the
possible neighborhood configurations and saying
what happens to the center cell, for example:  
 

• We can name our CA by translating the “next” row
from binary to decimal: this is Rule 50!  
(256 total possible CAs of this type)

52 Chapter 6. Cellular Automata

Figure 6.1: Rule 50 after 10 time steps.

In the early 1980s Stephen Wolfram published a series of papers presenting a systematic
study of 1-dimensional CAs. He identified four general categories of behavior, each more
interesting than the last.

To say that a CA has dimensions is to say that the cells are arranged in a contiguous space
so that some of them are considered “neighbors.” In one dimension, there are three natural
configurations:

Finite sequence: A finite number of cells arranged in a row. All cells except the first and
last have two neighbors.

Ring: A finite number of cells arranged in a ring. All cells have two neighbors.

Infinite sequence: An infinite number of cells arranged in a row.

The rules that determine how the system evolves in time are based on the notion of a
“neighborhood,” which is the set of cells that determines the next state of a given cell. Wol-
fram’s experiments use a 3-cell neighborhood: the cell itself and its left and right neighbors.

In these experiments, the cells have two states, denoted 0 and 1, so the rules can be sum-
marized by a table that maps from the state of the neighborhood (a tuple of 3 states) to the
next state for the center cell. The following table shows an example:

prev 111 110 101 100 011 010 001 000
next 0 0 1 1 0 0 1 0

The row first shows the eight states a neighborhood can be in. The second row shows the
state of the center cell during the next time step. As a concise encoding of this table, Wol-
fram suggested reading the bottom row as a binary number. Because 00110010 in binary is
50 in decimal, Wolfram calls this CA “Rule 50.”

Figure 6.1 shows the effect of Rule 50 over 10 time steps. The first row shows the state of
the system during the first time step; it starts with one cell “on” and the rest “off”. The
second row shows the state of the system during the next time step, and so on.

The triangular shape in the figure is typical of these CAs; is it a consequence of the shape of
the neighborhood. In one time step, each cell influences the state of one neighbor in either
direction. During the next time step, that influence can propagate one more cell in each
direction. So each cell in the past has a “triangle of influence” that includes all of the cells
that can be affected by it.

Downey, Think Complexity (Chp. 6)

Rule 5052 Chapter 6. Cellular Automata

Figure 6.1: Rule 50 after 10 time steps.

In the early 1980s Stephen Wolfram published a series of papers presenting a systematic
study of 1-dimensional CAs. He identified four general categories of behavior, each more
interesting than the last.

To say that a CA has dimensions is to say that the cells are arranged in a contiguous space
so that some of them are considered “neighbors.” In one dimension, there are three natural
configurations:

Finite sequence: A finite number of cells arranged in a row. All cells except the first and
last have two neighbors.

Ring: A finite number of cells arranged in a ring. All cells have two neighbors.

Infinite sequence: An infinite number of cells arranged in a row.

The rules that determine how the system evolves in time are based on the notion of a
“neighborhood,” which is the set of cells that determines the next state of a given cell. Wol-
fram’s experiments use a 3-cell neighborhood: the cell itself and its left and right neighbors.

In these experiments, the cells have two states, denoted 0 and 1, so the rules can be sum-
marized by a table that maps from the state of the neighborhood (a tuple of 3 states) to the
next state for the center cell. The following table shows an example:

prev 111 110 101 100 011 010 001 000
next 0 0 1 1 0 0 1 0

The row first shows the eight states a neighborhood can be in. The second row shows the
state of the center cell during the next time step. As a concise encoding of this table, Wol-
fram suggested reading the bottom row as a binary number. Because 00110010 in binary is
50 in decimal, Wolfram calls this CA “Rule 50.”

Figure 6.1 shows the effect of Rule 50 over 10 time steps. The first row shows the state of
the system during the first time step; it starts with one cell “on” and the rest “off”. The
second row shows the state of the system during the next time step, and so on.

The triangular shape in the figure is typical of these CAs; is it a consequence of the shape of
the neighborhood. In one time step, each cell influences the state of one neighbor in either
direction. During the next time step, that influence can propagate one more cell in each
direction. So each cell in the past has a “triangle of influence” that includes all of the cells
that can be affected by it.

Starting 
configuration

{

Each time step
as a row

Downey, Think Complexity (Chp. 6)

Rule 30

What happens if we keep going?
http://mathworld.wolfram.com/Rule30.html

http://mathworld.wolfram.com/Rule30.html

Wolfram’s CA Classification
• CA can produce surprisingly complex behavior

• Wolfram classification - 4 classes of 1D CA

• Class I – almost all initial conditions evolve to a
homogeneous state, any initial randomness is
lost (e.g. Rule 0)

• Class II – Simple pattern, stable,  
oscillating, nested structure  
(e.g. Rule 18)

56 Chapter 6. Cellular Automata

Figure 6.3: Rule 18 after 64 steps.

Exercise 6.1. Download and
and confirm that they run on your system; you might have to install additional Python packages.

Create a new class called that extends so that the cells are arranged in a ring. Hint:
you might find it useful to add a column of “ghost cells” to the array.

You can download my solution from

6.4 Classifying CAs

Wolfram proposes that the behavior of CAs can be grouped into four classes. Class 1 con-
tains the simplest (and least interesting) CAs, the ones that evolve from almost any starting
condition to the same uniform pattern. As a trivial example, Rule 0 always generates an
empty pattern after one time step.

Rule 50 is an example of Class 2. It generates a simple pattern with nested structure; that
is, the pattern contains many smaller versions of itself. Rule 18 makes the nested structure
even clearer; Figure 6.3 shows what it looks like after 64 steps.

This pattern resembles the Sierpiński triangle, which you can read about at
.

Some Class 2 CAs generate patterns that are intricate and pretty, but compared to Classes
3 and 4, they are relatively simple.

6.5 Randomness

Class 3 contains CAs that generate randomness. Rule 30 is an example; Figure 6.4 shows
what it looks like after 100 time steps.

Along the left side there is an apparent pattern, and on the right side there are triangles
in various sizes, but the center seems quite random. In fact, if you take the center column
and treat it as a sequence of bits, it is hard to distinguish from a truly random sequence. It
passes many of the statistical tests people use to test whether a sequence of bits is random.

Downey, Think Complexity (Chp. 6)

Wolfram’s CA Classification
• Class III - CAs that produce

seemingly random or chaotic
patterns

• Can produce sequences difficult
to distinguish statistically from
random, though the underlying
process is deterministic

• Class III CAs typically do not
produce long-lasting structures
(persisting over many time
steps)

6.5. Randomness 57

Figure 6.4: Rule 30 after 100 time steps.

Programs that produce random-seeming numbers are called pseudo-random number gen-
erators (PRNGs). They are not considered truly random because

• Many of them produce sequences with regularities that can be detected statistically.
For example, the original implementation of in the C library used a linear con-
gruential generator that yielded sequences with easily detectable serial correlations.

• Any PRNG that uses a finite amount of state (that is, storage) will eventually repeat
itself. One of the characteristics of a generator is the period of this repetition.

• The underlying process is fundamentally deterministic, unlike some physical pro-
cesses, like radioactive decay and thermal noise, that are considered to be fundamen-
tally random.

Modern PRNGs produce sequences that are statistically indistinguishable from random,
and they can be implemented with with periods so long that the universe will collapse
before they repeat. The existence of these generators raises the question of whether there
is any real difference between a good quality pseudo-random sequence and a sequence
generated by a “truly” random process. In A New Kind of Science, Wolfram argues that
there is not (pages 315–326).
Exercise 6.2. This exercise asks you to implement and test several PRNGs.

1. Write a program that implements one of the linear congruential generators described at
).

2. Download , a random number test suite, from
and use it to test your PRNG. How does it do?

3. Read the documentation of Python’s module. What PRNG does it use? Test it using
DieHarder.

Wolfram’s CA Classification

• Class IV - Evolve in
complex ways that
involve a mix of “chaotic”
and “ordered” (Class II
and Class III)

• Have the potential to
evolve local structures
that persist over many
time steps

6.7. Structures 59

Figure 6.5: Rule 110 after 100 time steps.

In the 1960s chaos theory showed that in some deterministic systems prediction is only pos-
sible over short time scales, limited by the precision of measurement of initial conditions.

Most of these systems are continuous in space (if not time) and nonlinear, so the complexity
of their behavior is not entirely surprising. Wolfram’s demonstration of complex behavior
in simple cellular automata is more surprising—and disturbing, at least to a deterministic
world view.

So far I have focused on scientific challenges to determinism, but the longest-standing
objection is the conflict between determinism and human free will. Complexity science
provides a possible resolution of this apparent conflict; we come back to this topic in Sec-
tion 10.7.

6.7 Structures
The behavior of Class 4 CAs is even more surprising. Several 1-D CAs, most notably Rule
110, are Turing complete, which means that they can compute any computable function.
This property, also called universality, was proved by Matthew Cook in 1998. See

.

Figure 6.5 shows what Rule 110 looks like with an initial condition of a single cell and 100
time steps. At this time scale it is not apparent that anything special is going on. There are
some regular patterns but also some features that are hard to characterize.

Figure 6.6 shows a bigger picture, starting with a random initial condition and 600 time
steps:

After about 100 steps the background settles into a simple repeating pattern, but there are
a number of persistent structures that appear as disturbances in the background. Some

Downey, Think Complexity (Chp. 6)

https://en.wikipedia.org/wiki/Cellular_automaton

60 Chapter 6. Cellular Automata

Figure 6.6: Rule 110 with random initial conditions and 600 time steps.

“Spaceships”

Downey, Think Complexity (Chp. 6)

Class IV CA’s and
computability

• Rule 110 has been proved to be computationally
universal, i.e. Turing complete (Cook M.,1998)

• So is Conway’s Game of Life (classic 2D CA), and
others

• Such CA can be used to compute any computable
function (discuss Church-Turing Thesis)

• Wolfram’s Conjecture: Every Class IV CA is Turing
complete?

Downey, Think Complexity (Chp. 6), Wolfram’s A New Kind of Science

Cellular Automata
• Dimensionality - How many dimensions?

• Boundaries - none (infinite domain), periodic
(wrapped), cut-off (edge cells have fewer
neighbors), fixed (edge cells take a fixed state)

• Grid size

• Grid type - for 2D and higher;  
square is typical (& will be  
our focus), but can do others!

https://en.wikipedia.org/wiki/Cellular_automaton

Cellular Automata
• State Set - binary, n-ary?

• Initial conditions - single cell active, random, etc.

• Neighborhood - queen/rook (Moore/Von
Neumann), neighborhood radius

• Rules - totalistic (depends only on sum over
neighborhood, e.g. majority rule), symmetric (e.g.
state transition is the same up to rotation)

CA Notation

• is the state of cell x at time t

• is the neighborhood

• Neighborhood usually defined as cells within a
given radius r of x

st+1(x) = F (st(x+ dx0), st(x+ dx1), . . . , st(x+ dxn�1))

st(x)

N = {dx0, dx1, . . . , dxn�1}

Parity Rule

• Based on the mod k sum of neighborhood values
(where k is the number of states)

• For binary CA, means they turn on/off based on if
sum is even/odd

192 CHAPTER 11. CELLULAR AUTOMATA I: MODELING

Figure 11.5: Typical behaviors of binary CA with a von Neumann neighborhood gov-
erned by the parity (XOR) rule.

• A living cell will remain alive if and only if it is surrounded by two or three other living
cells. Otherwise it will die.

The Game of Life shows quite dynamic, almost life-like behaviors (Fig. 11.6). Many in-
triguing characteristics have been discovered about this game, including its statistical
properties, computational universality, the possibility of the emergence of self-replicative
creatures within it, and so on. It is often considered one of the historical roots of Artificial
Life1, an interdisciplinary research area that aims to synthesize living systems using non-
living materials. The artificial life community emerged in the 1980s and grew together with
the complex systems community, and thus these two communities are closely related to
each other. Cellular automata have been a popular modeling framework used by artificial
life researchers to model self-replicative and evolutionary dynamics of artificial organisms
[37, 38, 39, 40].

11.3 Simulating Cellular Automata

Despite their capability to represent various complex nonlinear phenomena, CA are rel-
atively easy to implement and simulate because of their discreteness and homogeneity.

1http://alife.org/

st+1(x) =
n�1X

i=0

st(x+ dxi) mod k

Conway’s Game of Life
• Possibly the most classic/well-known CA

• Large community of researchers/hobbyists, helped
kick-start the field of ‘artificial life’

• Produces enormous range of interesting, non-trivial
behaviors

• Turing-complete

Conway’s Game of Lie

• Queen neighborhood (Moore neighborhood)

• A dead cell becomes alive if surrounded by exactly
3 live cells

• A living cell remains alive if surrounded by 2 or 3
living cells, otherwise it dies (either due to over- or
underpopulation)

Conway’s Game of Life
11.3. SIMULATING CELLULAR AUTOMATA 193

Figure 11.6: Typical behavior of the most well-known binary CA, the Game of Life.

There are existing software tools2 and online interactive demonstrations3 already available
for cellular automata simulation, but it is nonetheless helpful to learn how to develop a CA
simulator by yourself. Let’s do so in Python, by working through the following example
step by step.

The CA model we plan to implement here is a binary CA model with the droplet rule
[4]. Its state-transition function can be understood as a model of panic propagation among
individuals sitting in a gym after a fire alarm goes off. Here is the rule (which uses the
Moore neighborhoods):

• A normal individual will get panicky if he or she is surrounded by four or more panicky
individuals.

• A panicky individual will remain panicky if he or she is surrounded by three or more
panicky individuals. Otherwise he or she will revert back to normal.

Note that this rule can be further simplified to the following single rule:

• If there are four or more panicky individuals within the neighborhood, the central cell
will become panicky; otherwise it will become normal.

Here are other model assumptions:

• Space: 2-D, n⇥ n (n = 100 for the time being)

• Boundary condition: periodic

2Most notable is Golly (http://golly.sourceforge.net/).
3For example, check out Wolfram Demonstrations Project (http://demonstrations.wolfram.com/) and

Shodor.org’s interactive activities (http://www.shodor.org/interactivate/activities/).

Conway’s Game of Life

• Epic collection of Conway’s Game of Life patterns:  
https://youtu.be/C2vgICfQawE?t=70

• Web version to try: https://playgameoflife.com

• ca-gameoflife.py in PyCX

https://youtu.be/C2vgICfQawE?t=70
https://playgameoflife.com

Applications of CA &  
real-world examples

• Forest fire models/disease epidemics

• Sand heaps/avalanches

• Majority rule and voter models

• Diffusion-limited aggregation (DLA), percolation, lattice
models of materials

• And many more—some more realistic than others

• Many ABMs can be viewed as CA, or near-CA (e.g. if we
allow probabilistic rather than deterministic rules)

CA on seashells
• Conus textile appears to operate with Rule 30 (or

close to it)

CA on lizard scales

https://www.nature.com/articles/nature22031

CA Dynamics

• Not always easy to interpret! Can have many
patterns, as we saw with Game of Life, etc.

• However, sometimes there are major overall
patterns that we can see

Phase transitions/
bifurcations

• A phase transition is a “transition of macroscopic
properties of a collective system that occurs when
its environmental or internal conditions are varied”

• More generally, we often see bifurcations/
qualitative changes in behavior as we move across
parameter space

What are bifurcations?

• A bifurcation is a qualitative change in behavior as
parameters are varied

• The parameter value where this change happens
is called a bifurcation point

• Can create or destroy fixed points, change
stability, induce oscillations, & more

Qualitative changes in
behavior: population collapse
• Advanced fishing trawlers

introduced in 50’s/60’s

• Cod fishery collapse

• 1992 moratorium

• However, still not recovered
(only 10-33% of original stock)

• What happened?

http://www.nature.com/nclimate/journal/v1/n4/pdf/nclimate1146.pdf

Qualitative changes in
behavior

• Development of resistance in bacteria? Bifurcation or
just multiple equilibria?

• Onset of cancer—can think of as a bifurcation from
controlled growth & death (equilibrium) to uncontrolled
growth

• Wide range of other signaling mechanisms controlling
cell dynamics can be framed this way (cell cycling,
apoptosis, & more)

• Switches between brain states—e.g. sleep, epilepsy

Epileptic Seizure EEG

http://what-when-how.com/acp-medicine/epilepsy-part-1/

Not just temporal changes:
vegetation patterns!

• Pattern formation in vegetation

• Changes in elevation/moisture/etc. can
cause surprising changes in plant patterns
across space!

Negev, IsraelSouth Sudan

J. von Hardenberg/BIDR/Ben Gurion Univ. Google Earth

Alan Turing

Vegetation patterns

https://www.google.com/maps/@11.1596025,28.2570965,8746m/data=!3m1!1e3

https://www.google.com/maps/@11.1596025,28.2570965,8746m/data=!3m1!1e3
http://www.apple.com

Vegetation patterns

Scheffer et al., 2009 - http://www.nature.com/nature/journal/v461/n7260/full/nature08227.html

Disease dynamics
• The most classic bifurcation point in infectious

disease epidemiology: R0 = 1

• When R0 < 1 the disease-free equilibrium (DFE)
is stable (outbreak dies out)

• When R0 > 1, it is unstable (epidemic!)

• Basically all intervention efforts & vaccine
campaigns are trying to push us across a
bifurcation point to eliminate disease

CA models with phase
transitions/bifurcations

• Many examples—and even more when we
consider ABMs more generally (e.g. Schelling, etc.)

• Try out together:

• Forest fire/percolation model

• Host pathogen model

• Other useful concepts from dynamical systems:
basins of attraction, bistability, etc.

For next time…
• Reading

• Sayama Chapter 11

• Think Complexity Chapter 6

• We’ll discuss 2D CA, how to build CA, variations on
CA, and theory for how to analyze the complexity
and dynamics of CA

