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How smart are your agents?

Reflexive 
Agents

simple, static 
rules

Goal-Based 
Agents

rules adjust 
according to 

being in goal state

Utility-Based 
Agents

rules attempt to 
maximize utility 

function(s)

Adaptive
Agents

rules update based 
on experience

Cognitive Complexity- +



Game theory
• Game theory - motivated by the realization that the 

study of strategically interdependent behavior can 
be greatly enhanced via analysis of mathematical 
models of conflict and cooperation between 
“rational” decision-makers 

• First got going as a field in 1940s per publication of 
Theory of Games and Economics work by von 
Neumann and Morgenstern



Introduction
• Applied to a wide range of areas 

• Social sciences (economics, sociology, political 
science) 

• Biology (genetics, species) 

• Computer science and logic 

• Basic idea is that if we can conceptualize the 
interdependencies of individuals in a system as a game, 
will be able to “solve” for outcomes (for individuals all the 
way to population levels) 



Decision theory

• Sort of a one-player version of game theory, where 
each person decides an action based on their 
preferences and the expected outcome of their 
actions (but no considering of other individuals/
players involved)



Decision theory
• Actions: The set of things an individual can do. e.g. 

video games, nap, run simulations.  

• Outcomes: The results of each action  
• Video games → entertainment  
• Nap → rest 
• Run simulations → work  

• Preferences: An ordering that specifies how an 
individual ranks the outcomes. 
entertainment ≻ rest ≻ work 



• For a preference order to be rational, it must be 
complete and transitive. 

• Complete: for every pair of outcomes, one is 
preferred over the other (or they can be indifferent). 
Formally, for every a and b, a ≻ b, b ≺ a, or a = b. 
(One can consider strict ≻ or weak ≽ preference) 

• Transitive: For any three outcomes, a, b, and c, if a is 
preferred to b, and b is preferred to c, then a must be 
preferred to c. Formally, a ≻ b and b ≻ c implies a ≻ c. 

Preferences



Rationality

• Completeness and transitivity guarantee that a 
person will be able to identify the best alternative 
out of their available options 

• A rational actor in the economic sense always 
picks the most preferred alternative 

• Note that a rational choice ≠ good choice!



Preferences

• Preferences are often described using a utility 
function or payoff function, which assigns a 
number/value to each outcome—the ordering is 
then assessed based on the utility function value 

• Individuals then attempt to choose their actions to 
maximize their utility



Game theory

• Most decisions aren’t made in isolation – It’s 
important to know what somebody else might do. 
Game theory extends decision theory to problems 
where other people are a factor. 



Game theory
• Game

• Circumstances where results depends on the actions of 2 
or more individuals (players) 

• Outcomes (payoff structures) are knowable and pre-defined 
• Players

• Possess choices (strategies) they can play  
• Seek to maximize their own utility/payoff (self-interest) and 

have the information and cognitive capacity to do so 
(rationality) 

• Typically everybody has common knowledge 



Game theory
• Players: the actors making decisions 

• Strategies: sets of choices specified for each 
player—these may or may not be the same across 
players! 

• Strategy profile: a set containing one strategy 
chosen by each player  

• Payoffs: a numerical representation of the costs 
and benefits of each strategy profile to each player 



Common assumptions for 
games

• Rationality: Each player picks the action that gives 
the highest payoff given what they believe the other 
player might do. (Players always play best responses)  

• Complete information: Each player knows the game, 
all of the payoffs, and all of the actions available to 
every player. 

• Common knowledge: Each player knows that the 
other players are rational and have complete 
information. 



Common assumptions for 
games

• In practice, at least one of these assumptions is 
often violated. The basic theory shown here can be 
extended to deal with some deviations from 
rationality (bounded rationality, evolutionary game 
theory) and incomplete information (Bayesian 
games, and others). 



Game variants
• Games come in a wide number of varieties: 

• Non-cooperative vs. cooperative 

• Zero-sum vs. non-zero-sum 

• One shot vs. Iterated 

• Symmetric vs. Non-symmetric 

• Simultaneous vs. Sequential (Normal vs. Extensive forms) 

• Two vs. Many player 



Solutions to Games
• Anticipating the outcome of a games is often 

oriented toward analytically solving for the “stable” 
configuration of choices individuals can make 

• Specifically, oriented toward identifying the Nash 
equilibria of a game: 

• Given that all players know each others’ 
equilibrium strategies, no player can benefit from 
changing their own strategy while the other 
players’ strategies remain unchanged 



Prisoner’s Dilemma

Prisoner’s Dilemma Coordination Game (Stag Hunt)

Nash equilibria?



Prisoner’s Dilemma

Prisoner’s Dilemma Coordination Game (Stag Hunt)



Pure coordination game

10,10 0,0

0,0 10,10

E.g.—suppose walking and don’t want to bump into the 
person walking the other way—want to both swerve same 

direction (e.g. if both swerve to their own right, will miss each 
other, but if one swerves to their right and the other to their left 

they will bump into one another!)
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Pure coordination game

10,10 0,0

0,0 10,10

Multiple Nash equilibria
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Other coordination games
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matching cases)



Mixed strategies: best 
response correspondences
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Matching pennies game

+1,-1 -1,+1

-1,+1 +1,-1

Heads Tails
H

ea
ds

Ta
ils

Even

Odd

Zero-sum game 
Nash equilibria?



Matching pennies game



Challenges of games
• The need to remain analytically tractable makes it 

difficult to incorporate certain aspects of real world 
circumstances into games: 
• Temporal evolution of populations 
• Stochasticity 
• Space and interaction topology 
• Explorations of heterogeneity 
• Multiple or no equilibria situations 



Challenges of games
• There have been many successful analytical 

approaches to tackling some of these issues (e.g. 
evolutionary game theory, etc.) 

• Given concerns with things like heterogeneity, 
space, interaction topology, simplistic actors, 
adaptation, and temporal dynamics, seems like 
computational modeling may be useful in 
understanding these dynamics as well… 



Game theory & ABMs
• Basic mapping:

Players Agents

Strategies 
and Actions 

Agent rules

Player Payoff Agent variable

Player Level

Payoff Structure
Global variable 

called during agent 
interaction

Iterations Time Steps

Number of Players Number of agents 
involved in an 

interaction

Game Level



Game theory & ABMs
• Capture bounded rationality with agents using simple 

behavioral rulesets based only on local information 

• Bounded rationality - individuals have limited 
information, cognitive limitations, and finite time to 
make a decision 

• Capture rudimentary “learning” through incorporation 
of agent memory in behavioral rules 

• Introduce interaction topologies to determine who plays 
(interacts) with whom 



Population dynamics & 
game theory

• Link agent payoffs to fitness and begin with a 
heterogeneous mix of agents imbued with different 
strategies 

• Can use a tournament (i.e. multiple rounds of interaction) 
to assess robustness of different strategies or go further 
and link payoffs to reproduction in next rounds 

• Investigate strategy evolution through allowing strategy 
“mutations” during reproduction (genetic algorithms, 
evolutionary game theory)



Population dynamics & 
evolutionary game theory

https://en.wikipedia.org/wiki/Evolutionary_game_theory



Evolutionary game theory

• An evolutionary game describes interactions at a 
single point in time.  

• Evolutionary dynamics describe how traits change 
over time.  

• Replicator equation: Every generation, suppose 
traits increase in prevalence proportional to the 
difference between their fitness and the average 
fitness in the population. 



Population dynamics & 
evolutionary game theory

• Continuous time version:  
 
 

• where        is the average fitness 

• Wide range of approaches to looking at these 
issues (replicator-mutator, imitation dynamics, etc.) 

• But we can also look at this with agents! 



Population dynamics & 
games

• Note that these don’t necessarily have to refer to 
evolution in a biological sense—evolutionary game 
theory and similar approaches are often used to 
understand many different systems, e.g.: 
• Infectious diseases (e.g. disease/behavior 

feedback loops—consider social distancing, 
vaccination, etc.) 

• Voting patterns, communication 
• And many other systems where behavior may 

change over time



Evolution of Cooperation 
• Perhaps the most famous example of incorporating 

game theoretic model into an ABM context comes 
in classic study of the Evolution of Cooperation 
(Axelrod and Hamilton, 1981; Axelrod 1984) 

• Begins with a persistent problem in both the social 
sciences and biology: 

• How can cooperative behavior in groups arise 
and persist?



Cooperative behavior and 
altruism

• Humans, many different animals (bats, etc.) 

• However, cheating would often seem to gain higher 
payoff, why does cooperation and altruism persist? 

• Historically, there has been a major debate on how 
individually costly behavior that benefits the group 
can arise and sustain within populations. 

• Let’s look at this with prisoner’s dilemma



Cooperation and the 
Prisoner’s Dilemma

• Being in a group of 
cooperators is good, but 
being a defector in a group of 
cooperators is even better. 

• Holds true for biology as well: 
if payoffs are linked to 
reproduction, who will 
produce the most offspring?



Evolution of cooperation
• Axelrod’s Insight: 

• In a one-shot PD game, “Always Defect” [All-D] 
always wins at both the individual and population 
levels (anything else can always be “invaded” by a 
newcomers playing of [All-D]) 

• In an iterated PD game with an uncertain time 
horizon and a basic ability to remember prior 
interactions, however, other strategies may also 
be potentially stable



Evolution of cooperation
• Are there simple strategies relying on simple memory 

that can allow cooperative group behavior to succeed 
in situations of on-going interaction? 

• Success Criteria 

• Robustness: thrive in mixed population of strategies 

• Stability: once established can resist “invasion”   

• Initial viability: can establish in the midst of a lot of 
Defectors



Axelrod’s tournament

• Agents  

• Agents are assigned to play one of 14 extremely 
simple to somewhat more elaborate strategies 
submitted by a set of experts 

• Strategies also include [All D], [All C], and 
[Random]



Axelrod’s tournament
• Model Setup  

• Round-robin tournament of one-to-one matchups 
of all strategy pairs 

• Each matchup goes for 200 iterations (but 
agents don’t know that) 

• Model Outcome Assessment: see which strategy 
had the highest average payoff across whole 
tournament 



Axelrod’s tournament

• The Winner: 

• Tit-for-Tat [TFT]

• Even though extremely simple and involving only a 
very short memory, [TFT], that involves basic “nice” 
reciprocal cooperation, won out over everything 
else – including [ALL D]!



Let’s play!

• Netlogo iterated prisoner’s dilemma



Axelrod’s tournament 
(Round 2)

• Agents  

• 64 more strategies submitted from experts in a large 
number of fields (including Game Theory) 

• Model Setup  

• Same round-robin tournament of one-to-one matchups of 
all strategy pairs 

• Also looked at an “ecological” variant where populations for 
the next tournament were proportional to success in prior 
tournament (generated a time path of strategy distributions) 



Axelrod’s tournament 
(Round 2)

• The Winner: 

• Tit-for-Tat [TFT]  (Again) 

• Here too, this basic strategy dominated both in 
terms of average success AND by completely 
taking over the population distribution in the 
“ecological variant”



Take-home messages
• Given a set of extremely plausible assumptions (like some 

initial clustering of cooperatively inclined individuals in a 
population), the basic principle of reciprocal cooperation 
can outperform an “All Defection” approach 

• Without any appeals to “group selection,” can explain from 
“the bottom-up” emergence and persistence of 
cooperative behavior 

• Given importance of bounded rationality, heterogeneity, 
and temporal evolution of populations in this analysis, very 
unlikely we could have gotten these results without 
availability of computational modeling 



For next time…

• The evolution of trust: https://ncase.me/trust/ 

• The Evolution of Cooperation, Robert Axelrod; 
William D. Hamilton. Science, New Series, Vol. 211, 
No. 4489. (Mar. 27, 1981), pp. 1390-1396. 

https://ncase.me/trust/
https://ncase.me/trust/

