
Lecture 5: Cellular
Automata Dynamics

Complex Systems 530

How to explore the space of
CA behaviors?

• For simple models, we can examine the phase
space

• Phase space is the space (in this case a network)
of all possible states of the model

CA phase space
• How many different state configurations can we

have?

• D = number of dimensions (1, 2, 3, etc.)

• L = length in each dimension (number of cells)

• r = neighborhood radius (how many cells out to
consider)

• k = number of states (binary, more?)

How many different
configurations can we have?

• Total cells in the space:

• Each cell can be in one of k states

• Total possible configurations for the system:

• E.g., a 2D 10x10 binary CA has
possible configurations

LD

kL
D

210
2

= 1, 048, 576

CA rule space
• How many different rules (CAs) can we have?

• Total cells in neighborhood (including self):

• Total possible configurations for a single neighborhood
(termed situations):

• For each situation we map to a resulting state, so total
possible rules (CAs) is:

(2r + 1)D

k(2r+1)D

kk
(2r+1)D

Very big!

Phase space
• Phase space is the space of all possible states of

the model—for CA this is discrete, and finite if we
have a finite domain

• We can map how one configuration of the model
moves to another—forms a network

• Phase space comes from the analogous idea for
continuous dynamical systems—there we have a
continuous flow from one state to another, for CA
we have a directed network

Phase space
• How to map the network of transitions between

states?

• We can translate a configuration of space into a
binary number, and use this to label each space

• Connect edges from each
configuration to the next as
we step through time

52 Chapter 6. Cellular Automata

Figure 6.1: Rule 50 after 10 time steps.

In the early 1980s Stephen Wolfram published a series of papers presenting a systematic
study of 1-dimensional CAs. He identified four general categories of behavior, each more
interesting than the last.

To say that a CA has dimensions is to say that the cells are arranged in a contiguous space
so that some of them are considered “neighbors.” In one dimension, there are three natural
configurations:

Finite sequence: A finite number of cells arranged in a row. All cells except the first and
last have two neighbors.

Ring: A finite number of cells arranged in a ring. All cells have two neighbors.

Infinite sequence: An infinite number of cells arranged in a row.

The rules that determine how the system evolves in time are based on the notion of a
“neighborhood,” which is the set of cells that determines the next state of a given cell. Wol-
fram’s experiments use a 3-cell neighborhood: the cell itself and its left and right neighbors.

In these experiments, the cells have two states, denoted 0 and 1, so the rules can be sum-
marized by a table that maps from the state of the neighborhood (a tuple of 3 states) to the
next state for the center cell. The following table shows an example:

prev 111 110 101 100 011 010 001 000
next 0 0 1 1 0 0 1 0

The row first shows the eight states a neighborhood can be in. The second row shows the
state of the center cell during the next time step. As a concise encoding of this table, Wol-
fram suggested reading the bottom row as a binary number. Because 00110010 in binary is
50 in decimal, Wolfram calls this CA “Rule 50.”

Figure 6.1 shows the effect of Rule 50 over 10 time steps. The first row shows the state of
the system during the first time step; it starts with one cell “on” and the rest “off”. The
second row shows the state of the system during the next time step, and so on.

The triangular shape in the figure is typical of these CAs; is it a consequence of the shape of
the neighborhood. In one time step, each cell influences the state of one neighbor in either
direction. During the next time step, that influence can propagate one more cell in each
direction. So each cell in the past has a “triangle of influence” that includes all of the cells
that can be affected by it.

0 0 1 0 0 = 4
0 1 0 1 0 = 10
1 0 1 0 1 = 21

4 10 21

Phase Space
• We can use the network structure to understand the

dynamics of CAs

• Gets tricky for larger grid spaces—many more nodes in
the network

• Many of the usual approaches for understanding
networks can be used to examine dynamics (cycles,
connectedness, etc.)

• Similar to state transition diagram/matrix for Markov
models

Phase Space Example

• Binary 1D CA, neighborhood radius 2

• 9 cells in ring arrangement (wrapped boundary)

• ‘Majority rule’

• Total possible configurations = 29 = 512

214 CHAPTER 12. CELLULAR AUTOMATA II: ANALYSIS

states in CA terminology.

Figure 12.1: Graph-based phase space of the 1-D binary CA model with the majority
rule (r = 2, L = 9) drawn with Code 12.3.

Exercise 12.4 Measure the number of states in each of the basins of attraction
shown in Fig. 12.1, and draw a pie chart to show the relative sizes of those basins.
Look up matplotlib’s online references to find out how to draw a pie chart. Then
discuss the findings.

Phase Space Example
• Many different basins of attraction, i.e. network

components

• 2 larger basins of attraction—explore with PyCX
code

• What is structure overall? What does it look like the
majority rule model will do?

• Explore together

Phase Space

• For larger grid sizes, can be much more
complicated, networks can become hairball-like

• Some dynamic patterns run for a long time before
stabilizing, e.g. the ‘rabbit’ in Game of Life takes
17,331 steps to stabilize (a very long path in the
phase space network)

Phase space exploration
• Code phase space for several 1D CA using

example code

• Explore together

• Look for:

• Attracting subsets, cycles, gardens of eden

• What do these correspond to dynamically?

Mean-field approximation
• As CA get more complicated, direct examination of

phase space becomes more challenging

• Mean field approximations give one way to understand
the dynamics in a very(!) rough way

• Mean field approximation describes the overall average
state of the system over time (i.e. how many on/off cells
on average)

• Much lower dimension—but also loses most of what
makes CA interesting?

Mean-field approximation216 CHAPTER 12. CELLULAR AUTOMATA II: ANALYSIS

Actual State Approximated State

Mean-field
approximation

Average state

p: density of ■’s
(mean field)

Individual cell

interaction interaction

Figure 12.2: Basic idea of the mean-field approximation.

matter how large the space is, the system’s state is approximated just by one variable:
the density of 1’s, pt. This is the mean field, and now our task is to describe its dynamics
in a difference equation.

When we derive a new difference equation for the average state, we no longer have
any specific spatial configuration; everything takes place probabilistically. Therefore, we
need to enumerate all possible scenarios of an individual cell’s state transition, and then
calculate the probability for each scenario to occur.

Table 12.1 lists all possible scenarios for the binary CA with the majority rule. The
probability of each state transition event is calculated by (probability for the cell to take
the “Current state”) ⇥ (probability for the eight neighbors to be in any of the “Neighbors’
states”). The latter is the sum of (number of ways to arrange k 1’s in 8 cells) ⇥ (probability
for k cells to be 1) ⇥ (probability for 8�k cells to be 0) over the respective range of k. You
may have learned about this kind of combinatorial calculation of probabilities in discrete
mathematics and/or probability and statistics.

Exercise 12.6 Confirm that the probabilities listed in the last column of Table 12.1
are a valid probability distribution, i.e., that the sum of them is 1.

To write a difference equation of pt, there are only two scenarios we need to take
into account: the second and fourth ones in Table 12.1, whose next state is 1. This is

Sayama p. 216 (Chp. 12)

Mean-field approximation

• Consider a 2D binary CA with majority rule

• Let be the density of 1’s (on state) in the grid at
time t

• We can treat the system probabilistically—work out
the probability that a cell would transition on/off
given the rules, with no particular knowledge of the
exact actual configuration of any given cell

pt

Mean-field approximation

• p(state) x p(neighbors’ states)

12.3. MEAN-FIELD APPROXIMATION 217

Table 12.1: Possible scenarios of state transitions for binary CA with the majority rule.

Current state Neighbors’ states Next state Probability of this transition

0 Four 1’s or fewer 0 (1� p)
4X

k=0

✓
8

k

◆
p
k(1� p)(8�k)

0 Five 1’s or more 1 (1� p)
8X

k=5

✓
8

k

◆
p
k(1� p)(8�k)

1 Three 1’s or fewer 0 p

3X

k=0

✓
8

k

◆
p
k(1� p)(8�k)

1 Four 1’s or more 1 p

8X

k=4

✓
8

k

◆
p
k(1� p)(8�k)

because the next value of the average state, pt+1, is the probability for the next state to be
1. Therefore, we can write the following difference equation (the subscript of pt is omitted
on the right hand side for simplicity):

pt+1 = (1� p)
8X

k=5

✓
8

k

◆
p
k(1� p)(8�k) + p

8X

k=4

✓
8

k

◆
p
k(1� p)(8�k) (12.6)

=
8X

k=5

✓
8

k

◆
p
k(1� p)(8�k) + p

✓
8

4

◆
p
4(1� p)4 (12.7)

=

✓
8

5

◆
p
5(1� p)3 +

✓
8

6

◆
p
6(1� p)2 +

✓
8

7

◆
p
7(1� p) +

✓
8

8

◆
p
8 + 70p5(1� p)4

(12.8)

= 56p5(1� p)3 + 28p6(1� p)2 + 8p7(1� p) + p
8 + 70p5(1� p)4 (12.9)

= 70p9 � 315p8 + 540p7 � 420p6 + 126p5 (12.10)

This result may still seem rather complicated, but it is now nothing more than a one-
dimensional nonlinear iterative map, and we already learned how to analyze its dynamics
in Chapter 5. For example, we can draw a cobweb plot of this iterative map by replacing
the function f(x) in Code 5.4 with the following (you should also change xmin and xmax

to see the whole picture of the cobweb plot):

Code 12.4: cobweb-plot-for-mfa.py
def f(x):

return 70*x**9 - 315*x**8 + 540*x**7 - 420*x**6 + 126*x**5

Sayama p. 217 (Chp. 12)

Mean-field approximation

• pt+1 = p(state is a 1 at next time step)

12.3. MEAN-FIELD APPROXIMATION 217

Table 12.1: Possible scenarios of state transitions for binary CA with the majority rule.

Current state Neighbors’ states Next state Probability of this transition

0 Four 1’s or fewer 0 (1� p)
4X

k=0

✓
8

k

◆
p
k(1� p)(8�k)

0 Five 1’s or more 1 (1� p)
8X

k=5

✓
8

k

◆
p
k(1� p)(8�k)

1 Three 1’s or fewer 0 p

3X

k=0

✓
8

k

◆
p
k(1� p)(8�k)

1 Four 1’s or more 1 p

8X

k=4

✓
8

k

◆
p
k(1� p)(8�k)

because the next value of the average state, pt+1, is the probability for the next state to be
1. Therefore, we can write the following difference equation (the subscript of pt is omitted
on the right hand side for simplicity):

pt+1 = (1� p)
8X

k=5

✓
8

k

◆
p
k(1� p)(8�k) + p

8X

k=4

✓
8

k

◆
p
k(1� p)(8�k) (12.6)

=
8X

k=5

✓
8

k

◆
p
k(1� p)(8�k) + p

✓
8

4

◆
p
4(1� p)4 (12.7)

=

✓
8

5

◆
p
5(1� p)3 +

✓
8

6

◆
p
6(1� p)2 +

✓
8

7

◆
p
7(1� p) +

✓
8

8

◆
p
8 + 70p5(1� p)4

(12.8)

= 56p5(1� p)3 + 28p6(1� p)2 + 8p7(1� p) + p
8 + 70p5(1� p)4 (12.9)

= 70p9 � 315p8 + 540p7 � 420p6 + 126p5 (12.10)

This result may still seem rather complicated, but it is now nothing more than a one-
dimensional nonlinear iterative map, and we already learned how to analyze its dynamics
in Chapter 5. For example, we can draw a cobweb plot of this iterative map by replacing
the function f(x) in Code 5.4 with the following (you should also change xmin and xmax

to see the whole picture of the cobweb plot):

Code 12.4: cobweb-plot-for-mfa.py
def f(x):

return 70*x**9 - 315*x**8 + 540*x**7 - 420*x**6 + 126*x**5

Sayama p. 217 (Chp. 12)

Mean-field approximation

12.3. MEAN-FIELD APPROXIMATION 217

Table 12.1: Possible scenarios of state transitions for binary CA with the majority rule.

Current state Neighbors’ states Next state Probability of this transition

0 Four 1’s or fewer 0 (1� p)
4X

k=0

✓
8

k

◆
p
k(1� p)(8�k)

0 Five 1’s or more 1 (1� p)
8X

k=5

✓
8

k

◆
p
k(1� p)(8�k)

1 Three 1’s or fewer 0 p

3X

k=0

✓
8

k

◆
p
k(1� p)(8�k)

1 Four 1’s or more 1 p

8X

k=4

✓
8

k

◆
p
k(1� p)(8�k)

because the next value of the average state, pt+1, is the probability for the next state to be
1. Therefore, we can write the following difference equation (the subscript of pt is omitted
on the right hand side for simplicity):

pt+1 = (1� p)
8X

k=5

✓
8

k

◆
p
k(1� p)(8�k) + p

8X

k=4

✓
8

k

◆
p
k(1� p)(8�k) (12.6)

=
8X

k=5

✓
8

k

◆
p
k(1� p)(8�k) + p

✓
8

4

◆
p
4(1� p)4 (12.7)

=

✓
8

5

◆
p
5(1� p)3 +

✓
8

6

◆
p
6(1� p)2 +

✓
8

7

◆
p
7(1� p) +

✓
8

8

◆
p
8 + 70p5(1� p)4

(12.8)

= 56p5(1� p)3 + 28p6(1� p)2 + 8p7(1� p) + p
8 + 70p5(1� p)4 (12.9)

= 70p9 � 315p8 + 540p7 � 420p6 + 126p5 (12.10)

This result may still seem rather complicated, but it is now nothing more than a one-
dimensional nonlinear iterative map, and we already learned how to analyze its dynamics
in Chapter 5. For example, we can draw a cobweb plot of this iterative map by replacing
the function f(x) in Code 5.4 with the following (you should also change xmin and xmax

to see the whole picture of the cobweb plot):

Code 12.4: cobweb-plot-for-mfa.py
def f(x):

return 70*x**9 - 315*x**8 + 540*x**7 - 420*x**6 + 126*x**5

12.3. MEAN-FIELD APPROXIMATION 217

Table 12.1: Possible scenarios of state transitions for binary CA with the majority rule.

Current state Neighbors’ states Next state Probability of this transition

0 Four 1’s or fewer 0 (1� p)
4X

k=0

✓
8

k

◆
p
k(1� p)(8�k)

0 Five 1’s or more 1 (1� p)
8X

k=5

✓
8

k

◆
p
k(1� p)(8�k)

1 Three 1’s or fewer 0 p

3X

k=0

✓
8

k

◆
p
k(1� p)(8�k)

1 Four 1’s or more 1 p

8X

k=4

✓
8

k

◆
p
k(1� p)(8�k)

because the next value of the average state, pt+1, is the probability for the next state to be
1. Therefore, we can write the following difference equation (the subscript of pt is omitted
on the right hand side for simplicity):

pt+1 = (1� p)
8X

k=5

✓
8

k

◆
p
k(1� p)(8�k) + p

8X

k=4

✓
8

k

◆
p
k(1� p)(8�k) (12.6)

=
8X

k=5

✓
8

k

◆
p
k(1� p)(8�k) + p

✓
8

4

◆
p
4(1� p)4 (12.7)

=

✓
8

5

◆
p
5(1� p)3 +

✓
8

6

◆
p
6(1� p)2 +

✓
8

7

◆
p
7(1� p) +

✓
8

8

◆
p
8 + 70p5(1� p)4

(12.8)

= 56p5(1� p)3 + 28p6(1� p)2 + 8p7(1� p) + p
8 + 70p5(1� p)4 (12.9)

= 70p9 � 315p8 + 540p7 � 420p6 + 126p5 (12.10)

This result may still seem rather complicated, but it is now nothing more than a one-
dimensional nonlinear iterative map, and we already learned how to analyze its dynamics
in Chapter 5. For example, we can draw a cobweb plot of this iterative map by replacing
the function f(x) in Code 5.4 with the following (you should also change xmin and xmax

to see the whole picture of the cobweb plot):

Code 12.4: cobweb-plot-for-mfa.py
def f(x):

return 70*x**9 - 315*x**8 + 540*x**7 - 420*x**6 + 126*x**5

12.3. MEAN-FIELD APPROXIMATION 217

Table 12.1: Possible scenarios of state transitions for binary CA with the majority rule.

Current state Neighbors’ states Next state Probability of this transition

0 Four 1’s or fewer 0 (1� p)
4X

k=0

✓
8

k

◆
p
k(1� p)(8�k)

0 Five 1’s or more 1 (1� p)
8X

k=5

✓
8

k

◆
p
k(1� p)(8�k)

1 Three 1’s or fewer 0 p

3X

k=0

✓
8

k

◆
p
k(1� p)(8�k)

1 Four 1’s or more 1 p

8X

k=4

✓
8

k

◆
p
k(1� p)(8�k)

because the next value of the average state, pt+1, is the probability for the next state to be
1. Therefore, we can write the following difference equation (the subscript of pt is omitted
on the right hand side for simplicity):

pt+1 = (1� p)
8X

k=5

✓
8

k

◆
p
k(1� p)(8�k) + p

8X

k=4

✓
8

k

◆
p
k(1� p)(8�k) (12.6)

=
8X

k=5

✓
8

k

◆
p
k(1� p)(8�k) + p

✓
8

4

◆
p
4(1� p)4 (12.7)

=

✓
8

5

◆
p
5(1� p)3 +

✓
8

6

◆
p
6(1� p)2 +

✓
8

7

◆
p
7(1� p) +

✓
8

8

◆
p
8 + 70p5(1� p)4

(12.8)

= 56p5(1� p)3 + 28p6(1� p)2 + 8p7(1� p) + p
8 + 70p5(1� p)4 (12.9)

= 70p9 � 315p8 + 540p7 � 420p6 + 126p5 (12.10)

This result may still seem rather complicated, but it is now nothing more than a one-
dimensional nonlinear iterative map, and we already learned how to analyze its dynamics
in Chapter 5. For example, we can draw a cobweb plot of this iterative map by replacing
the function f(x) in Code 5.4 with the following (you should also change xmin and xmax

to see the whole picture of the cobweb plot):

Code 12.4: cobweb-plot-for-mfa.py
def f(x):

return 70*x**9 - 315*x**8 + 540*x**7 - 420*x**6 + 126*x**5

12.3. MEAN-FIELD APPROXIMATION 217

Table 12.1: Possible scenarios of state transitions for binary CA with the majority rule.

Current state Neighbors’ states Next state Probability of this transition

0 Four 1’s or fewer 0 (1� p)
4X

k=0

✓
8

k

◆
p
k(1� p)(8�k)

0 Five 1’s or more 1 (1� p)
8X

k=5

✓
8

k

◆
p
k(1� p)(8�k)

1 Three 1’s or fewer 0 p

3X

k=0

✓
8

k

◆
p
k(1� p)(8�k)

1 Four 1’s or more 1 p

8X

k=4

✓
8

k

◆
p
k(1� p)(8�k)

because the next value of the average state, pt+1, is the probability for the next state to be
1. Therefore, we can write the following difference equation (the subscript of pt is omitted
on the right hand side for simplicity):

pt+1 = (1� p)
8X

k=5

✓
8

k

◆
p
k(1� p)(8�k) + p

8X

k=4

✓
8

k

◆
p
k(1� p)(8�k) (12.6)

=
8X

k=5

✓
8

k

◆
p
k(1� p)(8�k) + p

✓
8

4

◆
p
4(1� p)4 (12.7)

=

✓
8

5

◆
p
5(1� p)3 +

✓
8

6

◆
p
6(1� p)2 +

✓
8

7

◆
p
7(1� p) +

✓
8

8

◆
p
8 + 70p5(1� p)4

(12.8)

= 56p5(1� p)3 + 28p6(1� p)2 + 8p7(1� p) + p
8 + 70p5(1� p)4 (12.9)

= 70p9 � 315p8 + 540p7 � 420p6 + 126p5 (12.10)

This result may still seem rather complicated, but it is now nothing more than a one-
dimensional nonlinear iterative map, and we already learned how to analyze its dynamics
in Chapter 5. For example, we can draw a cobweb plot of this iterative map by replacing
the function f(x) in Code 5.4 with the following (you should also change xmin and xmax

to see the whole picture of the cobweb plot):

Code 12.4: cobweb-plot-for-mfa.py
def f(x):

return 70*x**9 - 315*x**8 + 540*x**7 - 420*x**6 + 126*x**5

Mean-field approximation

• Gives us a simple, 1-dimensional difference
equation that we can use to track the overall
probability/density of 1's vs. 0's in the system

• Can determine p0 from initial conditions and then
simulate forward

Cobweb plot
• Plots current value vs next

value

• Straight line of y = x

• Model function plotted as the
curve,

• Where these two intersect, we
have an equilibrium point!

218 CHAPTER 12. CELLULAR AUTOMATA II: ANALYSIS

This produces the cobweb plot shown in Fig. 12.3. This plot clearly shows that there
are three equilibrium points (p = 0, 1/2, and 1), p = 0 and 1 are stable while p = 1/2 is
unstable, and the asymptotic state is determined by whether the initial value is below or
above 1/2. This prediction makes some sense in view of the nature of the state-transition
function (the majority rule); interaction with other individuals will bring the whole system
a little closer to the majority choice, and eventually everyone will agree on one of the two
choices.

Figure 12.3: Cobweb plot of Eq. (12.10).

However, we should note that the prediction made using the mean-field approxima-
tion above doesn’t always match what actually happens in spatially explicit CA models.
In simulations, you often see clusters of cells with the minority state remaining in space,
making it impossible for the whole system to reach a unanimous consensus. This is be-
cause, after all, mean-field approximation is no more than an approximation. It produces
a prediction that holds only in an ideal scenario where the spatial locality can be ignored
and every component can be homogeneously represented by a global average, which,
unfortunately, doesn’t apply to most real-world spatial systems that tend to have non-
homogeneous states and/or interactions. So you should be aware of when you can apply
mean-field approximation, and what are its limitations, as summarized below:

pt

pt+1

12.3. MEAN-FIELD APPROXIMATION 217

Table 12.1: Possible scenarios of state transitions for binary CA with the majority rule.

Current state Neighbors’ states Next state Probability of this transition

0 Four 1’s or fewer 0 (1� p)
4X

k=0

✓
8

k

◆
p
k(1� p)(8�k)

0 Five 1’s or more 1 (1� p)
8X

k=5

✓
8

k

◆
p
k(1� p)(8�k)

1 Three 1’s or fewer 0 p

3X

k=0

✓
8

k

◆
p
k(1� p)(8�k)

1 Four 1’s or more 1 p

8X

k=4

✓
8

k

◆
p
k(1� p)(8�k)

because the next value of the average state, pt+1, is the probability for the next state to be
1. Therefore, we can write the following difference equation (the subscript of pt is omitted
on the right hand side for simplicity):

pt+1 = (1� p)
8X

k=5

✓
8

k

◆
p
k(1� p)(8�k) + p

8X

k=4

✓
8

k

◆
p
k(1� p)(8�k) (12.6)

=
8X

k=5

✓
8

k

◆
p
k(1� p)(8�k) + p

✓
8

4

◆
p
4(1� p)4 (12.7)

=

✓
8

5

◆
p
5(1� p)3 +

✓
8

6

◆
p
6(1� p)2 +

✓
8

7

◆
p
7(1� p) +

✓
8

8

◆
p
8 + 70p5(1� p)4

(12.8)

= 56p5(1� p)3 + 28p6(1� p)2 + 8p7(1� p) + p
8 + 70p5(1� p)4 (12.9)

= 70p9 � 315p8 + 540p7 � 420p6 + 126p5 (12.10)

This result may still seem rather complicated, but it is now nothing more than a one-
dimensional nonlinear iterative map, and we already learned how to analyze its dynamics
in Chapter 5. For example, we can draw a cobweb plot of this iterative map by replacing
the function f(x) in Code 5.4 with the following (you should also change xmin and xmax

to see the whole picture of the cobweb plot):

Code 12.4: cobweb-plot-for-mfa.py
def f(x):

return 70*x**9 - 315*x**8 + 540*x**7 - 420*x**6 + 126*x**5

pt+1

Cobweb plot

• In this case, the cobweb plot
shows 3 equilibria

• All 0 - stable

• All 1 - stable

• Half-and-half - unstable

• How true is this to the real CA?
Why?

218 CHAPTER 12. CELLULAR AUTOMATA II: ANALYSIS

This produces the cobweb plot shown in Fig. 12.3. This plot clearly shows that there
are three equilibrium points (p = 0, 1/2, and 1), p = 0 and 1 are stable while p = 1/2 is
unstable, and the asymptotic state is determined by whether the initial value is below or
above 1/2. This prediction makes some sense in view of the nature of the state-transition
function (the majority rule); interaction with other individuals will bring the whole system
a little closer to the majority choice, and eventually everyone will agree on one of the two
choices.

Figure 12.3: Cobweb plot of Eq. (12.10).

However, we should note that the prediction made using the mean-field approxima-
tion above doesn’t always match what actually happens in spatially explicit CA models.
In simulations, you often see clusters of cells with the minority state remaining in space,
making it impossible for the whole system to reach a unanimous consensus. This is be-
cause, after all, mean-field approximation is no more than an approximation. It produces
a prediction that holds only in an ideal scenario where the spatial locality can be ignored
and every component can be homogeneously represented by a global average, which,
unfortunately, doesn’t apply to most real-world spatial systems that tend to have non-
homogeneous states and/or interactions. So you should be aware of when you can apply
mean-field approximation, and what are its limitations, as summarized below:

pt

pt+1

Mean-field approximation
• Does not account for spatial features of the system!

• It will necessarily be very approximate and
represent only the “average” behavior of the
system assuming all cells experience a
homogeneous ‘neighborhood’

• Is this a good approximation for most CA?

• See also the renormalization group approach for
percolation (Sayama Chapter 12)

Extensions to CA
• Stochastic (probabilistic) CA - state transitions

happen with some probability based on
neighboring states (cf. Markov chains)

• Multi-layer CA - state values as vectors, e.g. may
capture multiple properties or attributes of the
agent, or different agents living on the same cell

• Asynchronous CA - updates non-simultaneously
(e.g. random, ordered, state-triggered)

A note about spaceships &
other structures

• Many spaceships and other stable patterns in CA

• An interesting question of whether these are “real”?

• The CA is made of cells, they do all the operations
of the model

• The patterns we observe are
not actual objects—just
persistent patterns that we name and
treat as separate entities

A note about spaceships
and other structures

• Although, this can be said of a lot of things? (E.g.
storms, maybe even people?)

• Doesn’t necessarily make the objects in CAs less
real because they are composed of cells

For next time…

• Reading

• Sayama Chapter 12

• Think Complexity Chapter 7

