Parameter Estimation & Maximum Likelihood
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Parameter Estimation

- In general—search parameter space to find optimal fit
to data

- Or to characterize distribution of parameters that
matches data
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Parameter Estimation

Basic idea: parameters that
give model behavior that

more closely matches data /(\Lk
are ‘best’ or ‘most likely’ F'//\._

Ccases

Frame this from a statistical E

perspective (inference, regression)

- Can determine ‘most likely’ parameters or
distribution, confidence intervals, etc.



How to frame this statistically®?

- Maximum Likelihood Approach

- |dea: rewrite the ODE model as a statistical model,
where we suppose we know the general form of the
density function but not the parameter values

- Then if we knew the parameters we could calculate
probability of a particular olbbservation/data:

P(z!p)

/ 2\

data parameters



Maximum Likelihood

- Likelihood Function

P(z1p)=f(z.p)=L(pIz)

- Re-think the distribution as a function of the data
iInstead of the parameters

Eo fleme) - psen( - S Lo

+ Find the value of p that maximizes L(p|z) - this is the
maximum likelihood estimate (MLE) (most likely given
the data)



Likelihood Function
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Likelihood Function

Probability density

Move the parameter and
the distribution shifts
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Data value



Likelihood Function

Parametervalue

Data value



Likelihood Function
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Likelihood Function

°DF given a
parameter value

Parameter value

Data value



Likelihood Function

Likelihood function
given data
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Maximum Likelihood

+ Consistency - with sufficiently large number of

observations n, it is possible to find
arbitrary precision (i.e. converges in

he value of p with
orobability to p)

Normality - as the sample size increases, the distribution
of the MLE tends to a Gaussian distribution with mean
and covariance matrix equal to the inverse of the Fisher

INformation matrix

Efficiency - achieves CR bound as

sample size—eo (N0

consistent estimator has lower asymptotic mean squared

error than MLE)



—xample - ODE Model with Gaussian Error

- Model:

i = f(x.t,p)
y = g(x,t,p)

+ Suppose data is taken at times ¢,,Z, ,...,I

n

- Dataatti= g, = y(ti)-l_ei

+ SUppose error is gaussian and unbiased, with known
. 9) .
variance ¢~ (can also be considered an unknown
parameter)



—xample - ODE Model with Gaussian Error

+The measured data Z; at time | can be viewed as a
sample from a Gaussian distribution with mean

v(x, t,p) and variance O

Concentration
o - N w D Ul (@)}
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Suppose all measurements are independent (is this
realistic?)



—xample - O

DE Model with Gaussian Error

- Then the likelihood function can be calculated as:

1 ( (zi—u)z\

Gaussian PDF: f(zi|M,02)=mGeXp(— = )



—xample - ODE Model with Gaussian Error

- Then the likelihood function can be calculated as:
cX 2\
2TO p( )

Gaussian PDF; f(z |l u,0°

1

/
Formatted for f( Iy(xt p eXPL

model:

2O



—xample - ODE Model with Gaussian Error

- Then the likelihood function can be calculated as:
u))

Gaussian PDF:  f (z lu,0° > eXp( )
Formatted for 1 / )) \
model: f( (xtiop), 2nanpL J

Likelihood function assuming independent observations:

L(y(tl.,p),a2 Izl,...,zn) = f(zl,...,zn Iy(ti,p),az)

= Ellf(zi Iy(ti,p),(fz)



—xample - O

— Model with Gaussian Error




—xample - O

DE Model with Gaussian

—rror

t Is often more convenient to minimize the Negative
_0g Likelihood (-LL) instead of maximizing the
_ikelihood

- Log is well behaved, minimization algorithms
common
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—xample - O
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—xample - ODE Model with Gaussian Error

n

. (Zi _)’(tivp))z
_ _ i=1
LL 2ln(2n)+ nln(0)+ >

If 0 Is known, then first two terms are constants & will not be
changed as p Is varied—so we can minimize only the 3rd term
and get the same answer

(z(zi _y(ti’p))z\

2

minp (—LL) = minp .




—xample - ODE Model with Gaussian

—rror

- Similarly for denominator:

minp(—LL) = minp

- This iIs just least squares!
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- S0, least squares is equivalent to the ML estimator
when we assume a constant known variance



Maximum Likelihood Summary for ODESs

- Can calculate other ML estimators for different
distributions

- Not always least squares-ish! (mostly not)

- Although surprisingly, least squares does fairly
decently a lot of the time



—xample - Poisson ML

For count data (e.g. incidence data), the Poisson
distribution is often more realistic than Gaussian

Likelihood function?



—xample - Poisson ML

- Model: .
X = f(x,t,p)
y=g(x,t,p)
- Data z; is assumed to be Poisson with mean y(ti)

- Assume all data points are independent

. Poisson PMF: Y(f,- )Zi e_)’(ti)

f(zi Iy(tl.))=

Z!



—xample - Poisson ML

- Likelihood function:

L(y(t,p)lz1 ..... Zn)




Polsson ML

 Negative log likelihood:

- |Last term Is constant



—xample - Poisson ML

- Poisson ML Estimator:

min (~LL) = min ( Ezln( 1)) + iy(ti))

+ Other common distributions - negative binomial
(overdispersion), zero-inflated poisson or negative
binomial, etc.



Maximum Likelihood Summary for ODESs

- Basic approach - suppose only measurement error

- Data Is given by distribution where model output is
the mean

- Suppose each time point of data is independent

- Use PDF/PMF to calculate the likelihood

- Take the negative log likelihood, minimize this over
the parameter space



Maximum Likelihood for other kinds of models

- Can be quite different!

- May require more computation to evaluate (e.g.
stochastic models)

- May also be structured quite differently! (e.g. network or
iIndividual-based models)



Tiny Network Example

- Data: infection pattern on the network

- Model: suppose constant probability p of infecting along
an edge

- What’s the likelihood?




Tiny Network Example

- Data: infection pattern on the network

- Model: suppose constant probability p of infecting along
an edge, assuming we start with first case

- What’s the likelihood?

- Let’s see how we would calculate
it for a specific data set

- L(p,data) = P(susc nodes did not get sick)
X P(infected nodes did get sick)



Very (very!) brief intro to
Sayesian Approaches to Parameter

—stimation

- Allows one to account for prior information about the

parameters

+ E.Q. previous studies in a similar population

- Update parameter information based on new data

-+ Recall Bayes’ Theorem:

P(p | z) = P(params | data) =



Very (very!) brief intro to
Bayesian Approaches to

P(plz)= P(params|data) =

Parameter

—stimation

Likelihood

\

Pror
distribution

/

P(z!p)-P(p)

P(z)

Normalizing constant
(can be difficult to calculate!)



Bayesian Parameter Estimation

From prior distribution & likelihood distribution, determine
the posterior distribution of the parameter
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Can repeat this process as new data is available



Bayesian Parameter Estimation

- Treats the parameters inherently as distributions (pbelief)

Philosophical battle between Bayesian & frequentist
Derspectives

- Word of caution on choosing your priors

- Denominator issues - MAP Approach



DID THE SUN JUST EXPLODE?

(ITS NIGHT, S0 WERE NOT SURE.)

THIS NEUTRINO DETECTOR MERSURES
WHETHER THE SUN HAS GONE NOVA.

( THEN, TROWS TWO DICE. |F THEY

BOTH COME UP SiX, IT UES T0 US.
OHERWISE, IT TELLS THE TRUIH.
LET’s TRY.
DETECTOR! HAS THE
SUN GONE NoR?
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FREQUENTIST STANSTICIAN: BAYESIAN STATISTIOAN:

THE PROBABILITY OF THIS RESULT
HAPPENING BY CHANCE 15 =002 BET YOU $50
GNCE p<0.05 T. CONCLUDE T HASNT.
THAT TE SN FHAS EXPLODED )
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