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Accuracy of results from mathematical and computer models of biological systems is often complicated

by the presence of uncertainties in experimental data that are used to estimate parameter values.

Current mathematical modeling approaches typically use either single-parameter or local sensitivity

analyses. However, these methods do not accurately assess uncertainty and sensitivity in the system as,

by default, they hold all other parameters fixed at baseline values. Using techniques described within

we demonstrate how a multi-dimensional parameter space can be studied globally so all uncertainties

can be identified. Further, uncertainty and sensitivity analysis techniques can help to identify and

ultimately control uncertainties. In this work we develop methods for applying existing analytical tools

to perform analyses on a variety of mathematical and computer models. We compare two specific types

of global sensitivity analysis indexes that have proven to be among the most robust and efficient.

Through familiar and new examples of mathematical and computer models, we provide a complete

methodology for performing these analyses, in both deterministic and stochastic settings, and propose

novel techniques to handle problems encountered during these types of analyses.

& 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Systems biology is the study of the interactions between the
components of a biological system, and how these interactions give
rise to the function and behavior of the system as a whole. The
systems biology approach often involves the development of
mathematical or computer models, based on reconstruction of a
dynamic biological system from the quantitative properties of its
elementary building blocks. Building mathematical and computa-
tional models is necessary to help decipher the massive amount of
data experimentalists are uncovering today. The goal of the systems
biologist or modeler is to represent, abstract, and ultimately
understand the biological world using these mathematical and
computational tools. Experimental data that are available for each
system should guide, support, and shape the model building
process. This can be a daunting task, especially when the
components of a system form a very complex and intricate network.

Paraphrasing Albert Einstein, models should be as simple as
possible, but not simpler. A parsimonious approach must be
followed. Otherwise, if every mechanism and interaction is
included, the resulting mathematical model will be comprised
of a large number of variables, parameters, and constraints, most
of them uncertain because they are difficult to measure
experimentally, or are even completely unknown in many cases.
Even when a parsimonious approach is followed during model
building, available knowledge of phenomena is often incomplete,
and experimental measures are lacking, ambiguous, or contra-
dictory. So the question of how to address uncertainties naturally
arises as part of the process. Uncertainty and sensitivity (US)
analysis techniques help to assess and control these uncertainties.

Uncertainty analysis (UA) is performed to investigate the
uncertainty in the model output that is generated from uncertainty
in parameter inputs. Sensitivity analysis (SA) naturally follows UA
as it assesses how variations in model outputs can be apportioned,
qualitatively or quantitatively, to different input sources (Saltelli
et al., 2000). In this work we review US analysis techniques in the
context of deterministic dynamical models in biology, and propose
a novel procedure to deal with a particular stochastic, discrete type
of dynamical model (i.e. an agent-based model—ABM1).

By deterministic model, we mean that the output of the model
is completely determined by the input parameters and structure
of the model. The same input will produce the same output if the
model were simulated multiple times. Therefore, the only
uncertainty affecting the output is generated by input variation.
This type of uncertainty is termed epistemic (or subjective,
reducible, type B uncertainty; see Helton et al., 2006). Epistemic
uncertainty derives from a lack of knowledge about the adequate
value for a parameter/input/quantity that is assumed to be
constant throughout model analysis. In contrast, a stochastic
model will not produce the same output when repeated with the
same inputs because of inherent randomness in the behavior
of the system. This type of uncertainty is termed aleatory

(or stochastic, irreducible, type A; see Helton et al., 2006). This
distinction has been and still is an area of interest and study in the
1 IBM ¼ Individual Based Modeling in fields like ecology.
engineering and risk assessment community (see Apostolakis,
1990; Helton, 1997; Helton et al., 2007; Parry and Winter, 1981;
Pate’-Cornell, 1996).

Many techniques have been developed to address US analysis:
differential analysis, response surface methodology, Monte Carlo
(MC) analysis, and variance decomposition methods. See Iman
and Helton, (1988) and Saltelli et al. (2000) for details on each of
these approaches and Cacuci and Ionescu-Bujor (2004), Draper
(1995), Helton (1993) and Saltelli et al. (2005) for more general
reviews on US analysis. Here we briefly illustrate the most
popular, reliable, and efficient UA techniques and SA indexes. In
Section 2, we describe two UA techniques: a MC approach and
Latin hypercube sampling (LHS). In Section 3, we describe two SA
indexes: partial rank correlation coefficient (PRCC) and extended
Fourier amplitude sensitivity test (eFAST): PRCC is a sampling-
based method, while eFAST is a variance-based method. In Section
4, we perform US analysis on both new and familiar deterministic
dynamical models (quantifying epistemic uncertainty) from
epidemiology and immunology, and discuss results. Section 5
presents an ABM, where we suggest a method to deal with the
aleatory uncertainty that results from the stochasticity embedded
in the model structure, to facilitate the use of PRCC and eFAST
techniques. We use Matlab (Copyright 1984–2006 The Math-
Works, Inc., Version 7.3.0.298 R2006b) to solve all the differential
equation systems of Section 4 and to implement most of the
US analysis functions described throughout the manuscript
(available on our website, http://malthus.micro.med.umich.edu/
lab/usanalysis.html).
2. Uncertainty analysis

Input factors for most mathematical models consist of
parameters and initial conditions for independent and dependent
model variables. As mentioned, these are not always known with a
sufficient degree of certainty because of natural variation, error in
measurements, or simply a lack of current techniques to measure
them. The purpose of UA is to quantify the degree of confidence in
the existing experimental data and parameter estimates. In this
section we describe the most popular sampling-based approaches
used to perform UA, MC methods, and their most efficient
implementation, namely the LHS technique.

2.1. Monte Carlo simulation

MC methods are popular algorithms for solving various kinds
of computational problems. They include any technique of
statistical sampling employed to approximate solutions to
quantitative problems. A MC simulation is based on performing
multiple model evaluations using random or pseudo-random
numbers to sample from probability distributions of model
inputs. The results of these evaluations can be used to both
determine the uncertainty in model output and perform SA.
A large body of literature exists on the use of expert review
processes to characterize epistemic uncertainty associated with
poorly known model parameters (see for example Cooke, 1991;
Evans et al., 1994; Hora and Iman, 1989; McKay and Meyer, 2000).

http://malthus.micro.med.umich.edu/lab/usanalysis.html
http://malthus.micro.med.umich.edu/lab/usanalysis.html


ARTICLE IN PRESS

Fig. 1. Scheme of uncertainty and sensitivity analysis performed with LHS and PRCC

S. Marino et al. / Journal of Theoretical Biology 254 (2008) 178–196180
For each parameter, sampling is guided by the specification
of a probability density function (pdf) (i.e. normal, uniform,
lognormal, etc.), depending on a priori information. If there are no
a priori data, a natural choice is a uniform distribution (assigning
some hypothetical, but large range with minimum and maximum
values for the parameters). If biological knowledge exists
suggesting a more frequent or expected value for a parameter, a
normal pdf would be the best choice (setting the variance of the
distribution as large as needed).

Several sampling strategies can be implemented to perform
UA, such as random sampling, importance sampling, or LHS
(Helton and Davis, 2003; Mckay et al., 1979). To recreate input
factor distributions through sampling, a large number of samples
are likely required. If too few iterations are performed, not all
values may be represented in the samples or values in the outer
ranges may be under-sampled. The LHS algorithm was specifically
developed to address this problem and it is by far the most
popular sampling scheme for UA (Morris, 2000).

2.2. Latin hypercube sampling—LHS

LHS belongs to the MC class of sampling methods, and was
introduced by Mckay et al. (1979). LHS allows an un-biased
estimate of the average model output, with the advantage that it
requires fewer samples than simple random sampling to achieve
the same accuracy (Mckay et al., 1979). LHS is a so-called stratified

sampling without replacement technique, where the random
parameter distributions are divided into N equal probability
intervals, which are then sampled. N represents the sample size.
The choice for N should be at least k+1, where k is the number of
parameters varied, but usually much larger to ensure accuracy. If
the interval of variation for some parameter is very large (several
orders of magnitude), the sampling can be performed on a log
scale to prevent under-sampling in the outer ranges of the interval
where the parameter assumes very small values (see Supplement
C and Fig. C.1 and C.2 online).

The LHS method assumes that the sampling is performed
independently for each parameter, although a procedure to
impose correlations on sampled values has also been developed
(Iman and Conover, 1982; Iman and Davenport, 1982). The
sampling is done by randomly selecting values from each pdf
(Fig. 1A). Each interval for each parameter is sampled exactly once
(without replacement), so that the entire range for each
parameter is explored (Fig. 1A). A matrix is generated (which we
call the LHS matrix) that consists of N rows for the number of
simulations (sample size) and of k columns corresponding to the
number of varied parameters (Fig. 1B). N model solutions are then
simulated, using each combination of parameter values (each row
of the LHS matrix, Fig. 1B).

The model output of interest is collected for each model
simulation. Different model outputs can be studied if more than
one model output is of interest.
methods. The mathematical model is represented as an ordinary differential equation

system, where x is the vector of state variables in an n-dimensional space Rn : (as an

example we set n ¼ 2 and h is the parameter vector in Rk (k ¼ 3 in this example). For

ease of notation, the output y is unidimensional and it is a function of x and h. (A)

Mathematical model specification (dynamical system, parameters, output) and the

corresponding LHS scheme. Probability density functions (pdfs) are assigned to the

parameters of the model (e.g. a, b, c). We show an example with sample size N equal to

5. Each interval is divided into five equiprobable subintervals, and independent samples

are drawn from each pdf (uniform and normal). The subscript represents the sampling

sequence. (B) The LHS matrix (X) is then built by assembling the samples from each pdf.

Each row of the LHS matrix represents a unique combination of parameter values

sampled without replacement. The hypothetical model _x ¼ gðx; hÞ is then solved, the

corresponding output generated, and stored in the matrix Y. Each matrix is then rank-

transformed (XR and YR). (C) The LHS matrix (X) and the output matrix (Y) are used to

calculate the Pearson correlation coefficient (CCPearson). The rank-transformed LHS ma-

trix (XR) and output matrix (YR) are used to calculate the Spearman or rank correlation

coefficient (RCC) and the partial rank correlation coefficient (PRCC) (see Section 3.1).
3. Sensitivity analysis

SA is a method for quantifying uncertainty in any type of
complex model. The objective of SA is to identify critical inputs
(parameters and initial conditions) of a model and quantifying
how input uncertainty impacts model outcome(s). When input
factors such as parameters or initial conditions are known with
little uncertainty, we can examine the partial derivative of the
output function with respect to the input factors. This sensitivity
measure can easily be computed numerically by performing
multiple simulations varying input factors around a nominal
value. This technique is called a local SA because it investigates
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the impact on model output, based on changes in factors only
very close to the nominal values. In biology, input factors are
often very uncertain and therefore local SA techniques are not
appropriate for a quantitative analysis; instead global SA
techniques are needed. These global techniques are usually
implemented using MC simulations and are, therefore, called
sampling-based methods.

Different SA techniques will perform better for specific types of
mathematical and computational models. A natural starting point
in the analysis with sampling-based methods would be to
examine scatter plots. Scatter plots enable graphic detection of
nonlinearities, non-monotonicities, and correlations between
model inputs and outputs. See Helton and Davis (2002), Helton
et al. (2006), Hora and Helton (2003), Kleijnen and Helton (1999),
and Storlie and Helton (2008a, b) for a review on the indexes listed
in the next paragraph.

For linear trends, linear relationship measures that work well
are the Pearson correlation coefficient (CC), partial correlation
coefficients (PCCs), and standardized regression coefficients (SRC).
For nonlinear but monotonic relationships between outputs and
inputs, measures that work well are based on rank transforms2

such as Spearman rank correlation coefficient (RCC or Spearman’s
rho), partial rank correlation coefficient (PRCC), and standardized
rank regression coefficients (SRRC). For nonlinear non-monotonic
trends, methods based on decomposition of model output
variance are the best choice. Examples of these methods are the
Sobol method and its extended version based on (quasi) random
numbers and an ad hoc design (see Saltelli, 2002 for details), the
Fourier amplitude sensitivity test (FAST) and its extended version
(eFAST). Aside from those listed, there are alternative methods
available that are less affected by non-monotonic relationships
between the inputs and the output, e.g. common means, common
distributions or locations, common medians, and statistical
independence. These methods are based on gridding (placing
grids on a scatter plot) to evaluate any non-randomness in the
distribution of points across the grid cells and they are generally
less computationally expensive than variance-based methods
(such as eFAST).

In general, the computational execution time of the model is
the major concern when performing US analysis. Screening
methods, such as those of Morris (1991), are global and
computationally compatible: they represent adequate available
tools to efficiently address the problem, if the model is very large
and the execution time is prohibitive (several hours or days), as it
is usually the case for ABMs (see below).

We will focus and implement only PRCC and eFAST as two
examples of SA methods. PRCC and SRRC appear to be, in general,
the most efficient and reliable (giving similar results) among
the sampling-based indexes (see Saltelli and Marivoet, 1990)
while eFAST has proven to be one of the most reliable methods
among the variance-based techniques (Saltelli, 2004), although
computationally expensive (see Ratto et al., 2007; Tarantola et al.,
2006).

It is important to note that PRCCs and variance decompositions
obtained with eFAST measure two very different model proper-
ties. Specifically, PRCCs provide a measure of monotonicity after
the removal of the linear effects of all but one variable. In contrast,
the results obtained with eFAST return measures of fractional
variance accounted for by individual variables and groups of
variables. Ideally both indexes should be calculated in order to
have a complete and informative US analysis.
2 Definition of rank-transformation: the smallest value of a variable is assigned

a rank of 1, the next largest value is assigned a rank of 2, tied values are assigned an

average rank, and the largest value is assigned a rank equal to the sample size.
We review details for both PRCC and eFAST in the next section.
We tested the correctness of our Matlab implementation of
LHS/PRCC and eFAST by running similar experiments with the
softwares SaSat (see Hoare et al., 2008) and SimLab (2006), or
comparing with known results for eFAST (see Ishigami function,
pp. 41–42 in Saltelli et al. (2000) (data not shown).

3.1. Partial rank correlation coefficient (PRCC)

Correlation provides a measure of the strength of a linear
association between an input and an output. A CC between xj and
y is calculated as follows:

rxjy ¼
Covðxj; yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðxjÞVarðyÞ
p ¼

PN
i¼1ðxij � x̄Þðyi � ȳÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðxij � x̄Þ2
PN

i¼1ðyi � ȳÞ2
q ,

j ¼ 1;2; . . . ; k (1)

and varies between�1 and +1. Cov(xj, y) represents the covariance
between xj and y, while Var(xj) and Var(y) are respectively the
variance of xj and the variance of y (x̄ and ȳ are the respective
sample means). If xj and y are the raw data, then the coefficient r is
called sample or Pearson CC (Fig. 1C). If the data are rank-
transformed, the result is a Spearman or rank correlation
coefficient (Fig. 1C). It is important to note that the process
of rank-transforming data assumes that sampled model inputs
are real-valued or can adopt many possible values. If a para-
meter takes only integer values and the range of possible
values it can assume is less than N, there is insufficient
information to break ties during ranking, resulting in poor
correlations. We are currently pursuing methods to handle this
problem.3

Partial correlation characterizes the linear relationship bet-
ween input xj and output y after the linear effects on y of the
remaining inputs are discounted. The PCC between xj and y is the
CC between the two residuals ðxj � x̂jÞ and ðy� ŷÞ, where x̂j and ŷ

are the following linear regression models:

x̂j ¼ c0 þ
Xk

p¼1
paj

cpxp and ŷ ¼ b0 þ
Xk

p¼1
paj

bpxp (2)

Similarly to PCC, partial rank correlation (PRC) performs a
partial correlation on rank-transformed data: xj and y are first rank
transformed, and then the linear regression models described in
Eq. (2) are built. PRCC is a robust sensitivity measure for nonlinear
but monotonic relationships between xj and y, as long as little
to no correlation exists between the inputs (see Uncertainty

and sensitivity functions and implementation on our website http://
malthus.micro.med.umich.edu/lab/usanalysis.html for the use
of scatter plot functions to enable graphic detection of non-
monotonicities).

By combining the uncertainty analyses with PRCC, we are
able to reasonably assess the sensitivity of our outcome
variable to parameter variation (see for example Blower and
Dowlatabadi (1994) and Saltelli (2004). Fig. 2 shows an example
of a standard LHS–PRCC scheme, scatter plots with correlation
indexes (Pearson, Spearman, and PRCC, see Fig. 2C) and p-values
(see the titles of the scatter plots in Fig. 2C) based on a
classic ordinary differential equation (ODE) in population
dynamics: a predator–prey (or Lotka–Volterra) model. The
Lotka–Volterra model is the simplest model of predator–prey
3 The standard procedure when ties are encountered is to assign the tied

values the average of what their values would have been if they have been

consecutive but not equal. We are indirectly addressing the problem of integer-

valued parameters with very few values by a single-parameter space exploration,

holding them fixed during the UA and SA procedures.

http://malthus.micro.med.umich.edu/lab/usanalysis.html
http://malthus.micro.med.umich.edu/lab/usanalysis.html
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interactions and was developed independently by Lotka (1925)
and Volterra (1926):

_Q ¼ aQ ðtÞ � bQ ðtÞPðtÞ; Q ð0Þ ¼ 10ð#preyÞ (3)
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_P ¼ �sPðtÞ þ dQ ðtÞPðtÞ; Pð0Þ ¼ 5ð#predatorÞ (4)

It has two state variables (Q, P) and several parameters. Q

represents the density of prey, P represents the density of
predators, a is the intrinsic rate of prey population increase, b is
the predation rate coefficient, s is the predator mortality rate, and
d is the reproduction rate of predators per prey consumed. As an
example, we assume that these four parameters follow normal
pdfs (Fig. 2A) with means given by

ða ¼ 1:5; b ¼ 1; s ¼ 3; d ¼ 1Þ (5)

and initial conditions as shown in Eqs. (3) and (4). Standard
deviations for parameters a and d are set very small (i.e.
std ¼ 0.01) while parameters b and s are varied in a larger range
(i.e. std ¼ 0.2). LHS is performed following the scheme

a�Normalð1:5;0:01Þ

b�Normalð1;0:2Þ

s�Normalð3;0:2Þ

d�Normalð1;0:01Þ

8>>>><
>>>>:

(6)

The sample size N is set to 1000. Fig. 2A shows the cumulative
distribution functions (CDFs) for each parameter, while Fig. 2B
shows the outputs (Q(t)-prey and P(t)-predator) over time
corresponding to the LHS scheme illustrated in Fig. 2A.

3.2. Inference on PRCCs

Significance tests can be performed to assess if a PRCC is
significantly different from zero (thus, even small correlations
may be significant) and if two PRCC values are significantly
different from each other. Each PRCC (g) generates a value T

according to the following statistic (see Anderson, 2003, p. 143):

T ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN � 2� pÞ

1� g2

s
�tN�2�p (7)

where T follows a student’s t distribution with (N�2�p) degrees of
freedom. N is the sample size and p is the number of inputs/
parameters whose effects are discounted when the PRCC
is calculated. For example, if we vary 6 inputs/parameters
(xi, i ¼ 1,2,y,6) in LHS, p would be equal to 5 ðPRCCðxi; yÞ ¼

gxiy=xj
; j ¼ 1; . . . ;6 jaiÞ. Eq. (7) is exact for linear partial correlation

when the inputs and output are normally distributed, but is a
large-sample approximation otherwise. Fisher showed that the
following transformation of a sample Pearson CC r

r01 ¼
1

2
ln

1þ r

1� r

����
�����N m;

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 3
p

� �
(8)

is normally distributed with mean equal to the unknown
Pearson correlation of the population (m) and standard deviation
equal to 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 3
p� �

. In order to test if two Pearson CCs are
different, the log transformation in Eq. (8) is applied to the
Fig. 2. General LHS scheme and PRCC performed on the Lotka–Volterra model

(model equations and parameters are as described in Section 3.1). (A) Cumulative

distribution functions—CDFs of 1000 samples independently drawn from normal

pdfs (initialized following Eq. (6)) for the four parameters (a, b, s, d) of the

Lotka–Volterra model described in Section 3.1, Eqs. (3) and (4). (B) Outputs of the

Lotka–Volterra model over time (days) corresponding to the parameter combina-

tions of the LHS scheme illustrated in (A). (C) Example of sampling-based

correlation indexes calculated on the LHS matrix resulting from (A) and from the

output matrix resulting from (B). The reference output is the variable Q(t)-prey at

time t ¼ 9 and it is shown on the ordinate. Parameter s is taken as the parameter of

interest and it is represented on the abscissa. Each dot represents the output value

Q(9) for a specific sampled value of parameter s. Note that at each step of

processing (correlation, rank correlation, partial rank correlation), the linear

relationship between parameter and output variations becomes more apparent.
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respective sample Pearson CCs r1 and r2 and the following statistic
z is calculated (z-test):

z ¼
r01 � r02ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=ðN1 � 3Þ þ 1=ðN2 � 3Þ
p �Nð0;1Þ (9)

where N1 and N2 are the respective sample sizes. Since the
distribution of sample PCCs is of the same form as that of Pearson
CCs, the z statistic given in Eq. (9) can be used to compare them
(after applying the log transformation (8) to the PCCs (pcc0)):

z ¼
pcc01 � pcc02ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=ðN1 � 3� p1Þ þ 1=ðN2 � 3� p2Þ
p �Nð0;1Þ (10)

where N1 and N2 are the respective sample sizes and p1 and p2 are
the respective inputs/parameters whose effects are discounted
when pcc1 and pcc2 are calculated. The extension of Eq. (10) to
PRCCs can be inferred from Anderson (2003, p. 144).

3.3. Extended Fourier amplitude sensitivity test—eFAST

eFAST, developed by Saltelli (2004), Saltelli and Bolado (1998),
and Saltelli et al. (1999, 2000), is based on the original FAST
developed by Collins and Avissar (1994), Cukier et al. (1973), and
Schaibly and Shuler (1973). eFAST is a variance decomposition
method (analogous to ANOVA): input parameters are varied,
causing variation in model output. This variation is quantified
using the statistical notion of variance s2 ¼

PN
i¼1ðyi � ȳÞ2

.
N � 1,

where N ¼ sample size (or equivalently, total number of model
runs), yi ¼ ith model output, and ȳ ¼ sample mean. The algorithm
then partitions the output variance, determining what fraction of
the variance can be explained by variation in each input
parameter (i.e. partial variance). Partitioning of variance in eFAST
works by varying different parameters at different frequencies,
encoding the identity of parameters in the frequency of their
variation (see Supplement A.1 online for details). Fourier analysis
then measures the strength of each parameter’s frequency in the
model output. Thus, how strongly a parameter’s frequency
propagates from input, through the model, to the output serves
as a measure of the model’s sensitivity to the parameter.

The sampling procedure implemented in eFAST defines a
sinusoidal function of a particular frequency for each input
parameter (i.e. a search curve), x ¼ f(j), j ¼ 1,2,y,NS, that assigns
a value to x based on the sample number 1 through the total
number of samples per search curve, NS. The choice of sinusoidal
function depends on the distribution of parameter values desired
(e.g. uniform, normal, etc.). The frequencies assigned to para-
meters must meet several criteria so that they can be distin-
guished during Fourier analysis. See Supplement A.1 online for a
detailed discussion of how search curves are specified and
frequencies are chosen. The minimum recommended value for
NS is 65 (see Saltelli et al. 2000, p. 187). Due to the symmetry
properties of trigonometric functions, the sinusoidal function will
eventually repeat the same samples. A resampling scheme is
implemented to avoid this inefficiency (Saltelli et al., 1999): eFAST
algorithm is repeated NR (the resampling size) times with
different search curves specified by introducing a random phase
shift into each sinusoidal function. So, the total number of model
simulations, N, is given by N ¼ NS� k�NR, where k is the number
of parameters analyzed.

As an example, in Fig. 3, we illustrate the steps within
the eFAST algorithm to the Lotka–Volterra model described in
Section 3.1. We use 257 samples per search curve with no
resampling (i.e. NS ¼ 257, NR ¼ 1). Parameter s is taken as the
parameter of interest. The algorithm assigns parameter s a
frequency of 31 and parameter b a frequency of 2. For simplicity,
parameters a (frequency ¼ 1) and d (frequency ¼ 3) are not
illustrated. Fig. 3A illustrates this sampling step. Each sampled
parameter combination is then used to solve the model (Fig. 3B).

The primary advantage of the eFAST method over the original
FAST is the ability to calculate both the first-order sensitivity and
total-order sensitivity of each input parameter (see Supplement
A.2 online for details). A first-order sensitivity index, Si, of a given
parameter i, is calculated as the variance at a particular
parameter’s unique frequency (and harmonics of that frequency)
divided by total variance (Fig. 3D, white pie-slice). First, variance
(s2

i ) is calculated from the Fourier coefficients at the frequency of
interest, j:

s2
i ¼ 2ðA2

j þ B2
j Þ,

where

Aj ¼
1

p

Z p

�p
f ðxÞ cosðjxÞdx,

Bj ¼
1

p

Z p

�p
f ðxÞ sinðjxÞdx (11)

then, the first-order Si is calculated as a fraction of total variance:

Si ¼ s2
i

�
s2

total (12)

This index represents the fraction of model output variance
explained by the input variation of a given parameter. To estimate
the total-order sensitivity index, STi, of a given parameter i, eFAST
first calculates the summed sensitivity index of the entire
complementary set of parameters (i.e. all parameters except i)
using their identification frequencies (Fig. 3D, black pie-slice).

STi is then calculated as the remaining variance after the
contribution of the complementary set, Sci, is removed (Fig. 3D,
gray pie-slice):

STi ¼ 1� Sci (13)

This includes higher-order, nonlinear interactions between the
parameter of interest and the complementary set of parameters.
eFAST indexes can also be used to determine the degree of
additivity of a model (see Supplement A.3 online for details).
3.3.1. Inference on eFAST and the dummy parameter

Eq. (7) allows statistical inference on PRCCs. Since an
equivalent test for variance-based sensitivity indexes is not
available, we propose a novel method based on dummy
parameters for determining the significance of eFAST first- and
total-order indexes. The use of dummy parameters is a standard
practice in screening methods (see Saltelli et al., 2000, Chapter 4),
although, to our knowledge, it has never been applied in the
context of eFAST with the purpose of testing the significance of
first- and total-order sensitivity coefficients.

eFAST implements random resampling (NR) of search curves
for more efficient parameter sampling. Because different search
curves will produce different combinations of parameter values,
different search curves will lead to slightly different sensitivity
measures. We take advantage of these repeated measures to
perform statistical tests comparing eFAST sensitivity indexes. The
algorithm already performs these repeated measures, and thus
the statistical tests entail no additional computationally intensive
model simulations.

The eFAST method artifactually produces small but non-zero
sensitivity indexes for parameters to which the model is
completely independent. This is also true for the PRCC method.
To illustrate this point, we run an example SA where we include a
negative-control ‘‘dummy’’ parameter. This dummy parameter
does not appear in the model equations and does not affect the
model in any other way, so should ideally be assigned a sensitivity
index of zero. Fig. 4 shows eFAST and PRCC SA results with the use
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Fig. 3. eFAST performed on the Lotka–Volterra model. Model equations and parameters are as described in Section 3.1. (A) Input parameter sampling: parameters are varied

according to a sinusoidal function based on run number. Note that the shapes of these search curves result in normal distribution of parameter values (see Eq. (6) for

details) when sampled (horizontal histograms). s is assigned a frequency of 31, and b is assigned a frequency of 2. a and d are sampled at frequencies 1 and 3, respectively

(not shown). These frequencies are chosen automatically to meet the criteria described in Appendix A.1. (B) Model output: the model is solved for each parameter

combination from (A). The number of prey at t ¼ 9 is taken as the model output. Note that both high- and low-frequency components are evident by inspection. (C) Fourier

analysis and variance spectrum: the variance at each frequency is calculated from the model output (see text) and normalized to total variance. The variance at frequency 2,

31, and higher harmonics of frequency 31 are indicated (arrows). (D) Sensitivity indexes: taking parameter s (varied at frequency 31) as our parameter of interest, first-order

sensitivity index (Si) is calculated by the sum of variance at frequency 31 and higher harmonics, normalized to total variance (white pie slice). The sensitivity of the

complementary set of parameters is calculated similarly (black pie slice). The remaining variance is assumed to be the result of non-linear higher-order interaction between

parameters (gray pie slice). The total-order sensitivity index (STi) is calculated by the sum of Si and higher-order effects (white+gray pie slices).

4 We use the Matlab function ttest2 to perform the two-sample t-test. We

assume the most conservative options, e.g. two tails and that the two samples

come from normal distributions with unknown and unequal variances. This is

known as the Behrens–Fisher problem. ttest2 uses Satterthwaite’s approximation

for the effective degrees of freedom.
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of a dummy parameter on the Lotka–Volterra model discussed in
Section 3.1.

The eFAST algorithm assigns this dummy parameter a small
but non-zero first-order sensitivity index (Sdummy ¼ 0.003),
and total-order sensitivity index (STdummy) of approximately 0.11
(Fig. 4A). The non-zero first-order index, Sdummy, is likely derived
from aliasing and interference effects (see Supplement A.1 online).
The assignment of a larger artifactual value to the total-order
index, STdummy, is more complicated, as this artifact is derived from
imprecise simplifying assumptions used to calculate the total-
order index (see Supplement A.4 online). Since we cannot test if
those values are significantly different from zero, by taking a
dummy parameter as the parameter of interest, we propose a way
to quantify these artifacts and test for significance. Parameters
with a total-order sensitivity index less than or equal to that of the
dummy parameter should be considered not significantly differ-
ent from zero.
We propose using a two-sample t-test4 on data generated by
resampling the eFAST search curve to determine whether the
sensitivity indexes of a parameter of interest are significantly
different from the indexes calculated for the dummy parameter.
The t-test compares two distributions, the Sj

i or Sj
Ti

(j ¼ 1,2,y,NR)
with the Sj

dummy or Sj
Tdummy

(j ¼ 1,2,y,NR) (see Supplement A.5
online for more details).

Since NR is usually small (for ease of computation), the
adequacy of this t-test procedure is limited, considering that
the normality assumption (see footnote 4) is unlikely to hold for
the first- and total-order sensitivity indexes. However, it indicates
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Fig. 4. Dummy parameter on eFAST and PRCC performed on the Lotka–Volterra model. Model equations and parameters are as described in Section 4.1 and Table 1. The

reference output is Q(t)-prey Eq. (3), at t ¼ 9. (A) eFAST results with resampling and significance testing. Search curves were resampled five times (NR ¼ 5), for a total of

1285 model evaluations (NS ¼ 257). First-order Si and total-order STi are shown for each parameter, including a dummy parameter, as described in the text. Error bars

indicate 72 S.D. on the mean of resamples. Parameters with first- or total-order indexes significantly different (po0.01) from those of the dummy parameter are indicated

with asterisks (*).(B) PRCC results. Sample size N ¼ 1000. (*) denotes PRCCs that are significantly different from zero.
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whether a small total-order sensitivity index should be considered
an artifact of eFAST total-order estimation. The two-sample t-test
might also be used to determine whether the indexes of multiple
parameters of interest are significantly different from each other,
allowing qualitative comparisons of effect size. Fig. 4A illustrates
the use of resampling and statistical significance testing. The
LHS/PRCC algorithm (Fig. 4B) assigns a PRCC value to the dummy
parameter that is not significantly different from zero (0.04054,
p-value 40.05 according to the statistic (7)).

Although not relevant for our examples, multiple test correc-
tions should be considered if a large number of tests are
performed in the US analysis (see Supplement B for details).

3.4. Sample size N

There is no a priori exact rule for determining the adequate
sample size for either LHS–PRCC or eFAST. A minimum value is
known for both LHS (N ¼ k+1) and eFAST (NS ¼ 65), where k is the
number of uncertain parameters that are varied. A way to
overcome the problem is to systematically increase the sample
size and check if the sensitivity index used (in our case either
PRCC or eFAST Si and STi) can consistently capture and rank a
similar set of most important effects. If that holds between two
consecutive experiments, there is no evident advantage in
increasing the sample size, because the conclusions (in terms of
US analysis) will be the same. A measure of this type of correlation
is given by the top-down coefficient of concordance (TDCC).

TDCC is described in Iman and Conover (1980, 1987) where a
concordance measure is designed to be more sensitive to
agreement on the top rankings from a set of h different rankings.
It is based on Savage scores (Savage, 1956), defined as follows:

SSi ¼
Xk

j¼i

1=j (14)

where i is the rank assigned to the ith-order statistic in a sample
of size k5 (in our case k is the number of parameters varied).

If h ¼ 2, the top-down correlation rT is the simple CC computed
on Savage scores. If h42, rT is the Kendall’s coefficient of
5 If k ¼ 3, SS1 ¼ 1þ 1
2þ

1
3, SS2 ¼

1
2þ

1
3, and SS1 ¼

1
3.
concordance (still computed on Savage scores). TDCC asymptoti-
cally follows a normal distribution, specifically rT

ffiffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

�Nð0;1Þ.
We implemented TDCC following Iman and Conover (1980, 1987),
and it can be used for two purposes:
(i)
6

stati
selecting for an optimal sample size for LHS–PRCC and eFAST
(see examples in Section 4)
(ii)
 comparing PRCC and eFAST to see if they are in agreement
(not implemented).
An alternative method to assess the adequacy of sample size in
LHS is based on the use of t-distribution with replicated sampling
(see Sections 6 and 7 in Helton et al. (2000)).

The process of ranking in the PRC method refers to ranking
the raw data from the LHS matrix and model output in descending
order to calculate the PRC coefficient. Here and elsewhere, when
we state that a set of parameters is the ‘‘most important’’ in
affecting model output, we mean that after listing the sensitivity
indexes in descending order by value for either PRCC or eFAST,
these parameters are always greatest in absolute value. PRCCs
can be formally ranked by the z-test (see Eq. (10)). We propose
the use of a pairwise t-test and a dummy parameter to rank
Si and STi.

6

3.5. Time-varying sensitivity indexes

PRCC and eFAST indexes can be calculated for multiple time
points and plotted versus time. This allows us to assess whether
significances of one parameter occur over an entire time interval
during model dynamics (this is the usual presentation of SA
indexes for dynamical systems analysis). This analysis can be
performed in two ways. If specific time points are known to be
crucial, then only those will be checked for significance. For
example, a model of acute virus dynamics will focus on the first
days post infection. If we model a slow-growing pathogen
(like Mycobacterium tuberculosis), we might be interested in later
time points. If no particular time effect is known, the analysis can
The resampling size NR should be large enough to achieve accuracy in

stical significance.
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be done in an exploratory way, looking for any significant time-
dependent relationships throughout the entire time course. Fig. 5
shows an example of PRCCs plotted over time: the US analysis is
performed on the ODE model described in Section 4.3 (only five
parameters are shown). The gray area in Fig. 5 indicates PRCCs
that are not significantly different from zero (based on the
statistic (7)). A similar plot can be displayed for eFAST indexes Si

and STi (not shown).
In this example we see that the effect of parameter k2

(maximum rate of infection of resting macrophages due to
extracellular bacteria) changes with respect to bacterial load over
time: it is negatively correlated (very strong PRCC, almost perfect
negative correlation) right after infection (early time points), and
then it becomes positively (very strongly) correlated as the
infection progresses to its steady state. The positive sign of its
PRCC indicates that if we increase parameter k2, bacterial load
increases (and vice versa). The negative sign suggests that if we
increase it, bacterial load decreases (and vice versa). So, the rate
of infection of resting macrophages by M. tuberculosis (k2) is
initially responsible for lowering the extracellular bacterial load
(likely due to bacterial uptake). Then it becomes the most
important source of infection, likely due to bacteria proliferation:
the more bacteria internalized by macrophages, the more bacteria
are released into the extracellular domain due to overproliferation
and subsequent macrophage bursting or killing. Other mechan-
isms, such as the maximum rate of immature dendritic cells’
(IDCs) activation/maturation/migration from the lung to the
lymph node compartment (d10), only become significant later
during infection (from 300 days on, see Fig. 5).

3.6. Standard versus explorative US analysis

US analysis can be implemented by choosing a specific
reference output for calculating sensitivity indexes (for example,
viral or bacterial load, if we track the progression of an infection).
We define this type of approach a standard US analysis.

US analysis can be run on a list of several possible model
outputs and the results can then be studied and classified
depending on the goal of the analysis. We define this type of
approach an explorative US analysis. For example, if the model
comprises variables at different scales (e.g. intra-cellular
versus extracellular, or molecular versus cellular) or in different
compartments (e.g. different organs), we can choose outputs to
investigate effects of parameter changes on different scales or in
different compartments (see Section 4.3 for details). An intra-
compartmental/intra-scale US analysis investigates how certain
outputs generated in a specific compartment (scale) are affected
by variations of parameters belonging to the same compartment
(scale). An example of intra-compartmental US analysis can be to
study how the rate of infection of resting macrophages in the lung
affects the bacterial load in the lung (see Section 4.3).

Inter-compartmental US analysis explores how certain outputs
generated in one compartment in a multi-compartment/scale
model are affected by variations of parameters belonging to a
different compartment/scale (for example, how the percentage of
particular immune cells migrating from the lymph node—com-
partment 1—affects the bacterial load in the lung—compartment
2, see Section 4.3). The analysis can be performed either looking at
specific inter- and intra-compartmental effects in which we are
interested, or all the significant indexes can be listed and then
classified as inter- or intra-compartmental effects. An example of
multi-scale SA can be found in Chang et al. (2008) and Kirschner
et al. (2007).

Whether a standard or an explorative US analysis is performed,
the set of parameters that are varied is always under investigation
and the parameters are continuously varied. The difference is in
the goal of the analysis. Standard US analysis is applied for each of
the examples shown in Section 4, while explorative US analysis
is only applied to the two compartmental ODE model of
M. tuberculosis infection (Section 4.3).
4. Uncertainty and sensitivity analysis examples

Since the relationship (including monotonicity) between
parameters and outputs is not typically known a priori, then in
principle using both PRCC and eFAST methods is ideal. The
drawback is that issues related to accuracy of results and
computational costs may arise. To illustrate the differences
between these methods, we implement both PRCC and eFAST
and compare the results for different types of mathematical
models in biology: three different ODE systems (Lotka–Volterra,
cell population dynamics in HIV infection, and M. tuberculosis

infection), a delay differential equation (DDE) system in theore-
tical immunology, and an ABM of granuloma formation. The
results are model-specific. However, in the discussion at the end
of the manuscript, we suggest a general approach to balance
accuracy of analysis and computational costs.
4.1. Emphasizing PRCC is not accurate when non-monotonicities are

present: Lotka– Volterra model

We now revisit the predator–prey (or Lotka–Volterra) model
described in Section 3.1. Our goal is to focus on two of the four
parameters of model equations (3) and (4), and show how PRCC
and eFAST give contradictory results, even with a simple prey–
predator model. The CDFs of the parameter samples resulting
from the LHS scheme are illustrated in Fig. 2A. We set the sample
size N to 1000. Each parameter is independently sampled from
normal pdfs (see Eq. (6)) and the model described by Eqs. (3) and
(4) is simulated for each parameter combination. Fig. 6A shows
the Lotka–Volterra model outputs (Eq. (6), P(t)) corresponding to
the LHS matrix and scheme defined in Eq. (5). The vertical dashed
line represents the time point chosen to perform the SA (time ¼ 9
days). In order to test for nonlinearities and non-monotonicities
between input variations (parameter s) and output results (P(t),
predator), we produce scatter plots of the raw or ranked output
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Fig. 6. (A) Plot of the output (1000 runs) of the Lotka–Volterra model. The ordinate represents variable P(t), and the abscissa represents time (days). (B) Scatter plot (linear

scale) of parameter s (abscissa) and the ‘‘slice’’ of the output of (A) at time ¼ 9 (rPearson ¼ �0.15257, po0.001). (C) Linear–linear plot of the rank-transformed data of (B)

(rSpearman ¼ �0.0638, p40.04, where rSpearman is the rPearson coefficient calculated on the data of (C)). (D) Linear–linear plot of the residuals of the linear regressions of the

parameter s versus all the other parameters of the model (abscissa) and the residuals of the linear regression of the output versus parameter s (ordinate) (PRCC ¼ �0.0575,

p40.06). PRCC is the Pearson correlation coefficient calculated on the data of (D). Scatter plots of (B–D) remain qualitatively invariant for different LHS simulations. The

input parameter (and its rank-transformed values) shown on the abscissa is s, although all four parameters are varied simultaneously.

Table 1
Comparison of PRCC and eFAST values for Lotka– Volterra UA and SA (time

point ¼ day 9)

PRCC eFAST

Si (first order) STi (total order)

Parameters Q(t) P(t) Q(t) P(t) Q(t) P(t)

a 0.0916* 0.0055 0.0042 0.0584 0.0584 0.0018

b 0.5586* �0.1655* 0.1890* 0.6395* 0.6395* 0.0342*

s �0.7272* �0.0575 0.3306* 0.7794* 0.7794* 0.2324*

d 0.0422 0.0115 0.0032 0.0893 0.0893 0.0025

Dummy 0.0405 �0.0054 0.0013 0.0840 0.0840 0.0032
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(ordinate) versus raw or ranked input (abscissa, see Panel B, C and
D of Fig. 6).

Fig. 6B shows the linear scatter plot of the 1000 output values
at day 9 plotted versus input variation. Fig. 6C shows the linear
scatter plot of the rank-transformed data, while the scatter plot of
two different residuals7 used to calculate PRCC is shown in Fig. 6D
(see figure legends for details). There is clearly a non-monotonic,
nonlinear relationship between s and the output P(t) at time t ¼ 9
(Fig. 6B–D) and the corresponding PRCC is not significantly
different from zero (Fig. 6D, PRCC ¼ �0.0575, p40.06).

We designed the simulations varying parameters b and s over
large intervals, while parameters a and d are allowed to vary
around their respective mean value following a normal pdf with
*Significant (po0.01).

Values for the columns related to Q(t) are illustrated in Fig. 4.
7 We want to model y (response or dependent variable) as a function of x

(regressor or independent variable), i.e. y ¼ f(x). The error we make in the

prediction is called residual (e ¼ y�f(x)). In our case x is the parameter vector (a, b,

d, s) and f is a linear combination of a subset of x. Thus the x-axis of panel D

represents [ex ¼ s�f(a, b, d)] and the y-axis represents [ey ¼ y�f(s)], where the

dependent and independent variables are rank-transformed.
a very small standard deviation (e.g. 0.01). We tested for
significant PRCCs for all four parameters of the Lotka–Volterra
model. By construction, parameters a and d should not signifi-
cantly affect the output (as confirmed by PRCC columns in Table 1,
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Table 2
Parameter definitions and values of the HIV model described in Eqs. (15)– (18)

Parameter Description Range Baseline

s Rate of supply of CD4+ T cells from precursors [1e�2, 50] 10 day�1 mm�3

mT Death rate of uninfected and latently infected CD4+ T cells [1e�4, 0.2] 2e�2 day�1

r Rate of growth for the CD4+ T-cell population [1e�3, 50] 0.03 day�1

k1 Rate constant for CD4+ T cells becoming infected by free viruses [1e�7, 1e�3] 2.4e�5 mm3 day�1

k2 Rate latently infected cells convert to actively infected [1e�5, 1e�2] 3e�3 day�1

mb Death rate of actively infected CD4+ T cells [1e�1, 0.4] 0.24 day�1

NV Number of free viruses produced by lysing a CD4+ T cell [1, 2e3] 1200

mV Death rate of free virus [1e�1, 1e1] 2.4 day�1

Tmax Maximum CD4+ T-cell population level 1500 1500 mm�3
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where all PRCCs for a and d are between �0.05 and 0.05 and not
significant, except for the PRCC of a for output Q (�0.0916, po0.004).

Parameters b and s should significantly affect the output:
confirmed for the model output Q(t) (first PRCC column of Table 1,
0.5586 and �0.7272, with p-values o0.001) but because of the
non-monotonicity shown in Fig. 6D, PRCC of s versus the output
P(t) is not significant (�0.0575, p-value 40.06).

On the other hand, the first-order (Si) and total-order (STi)
sensitivity indexes returned by eFAST are the highest for s
(see Table 1, eFAST columns), suggesting that the contribution of
s to the variability of the output P(t) is in fact the most important.
According to condition (A.9) in Supplement A.5 online the
sampling size for each curve (NS ¼ 65) ensures accurate Si and
STi estimates (average CVrSi

o6% and CVrSTi
o2% for both outputs).

Summary: These contradictory results show how, even with
a simple model, nonlinear and non-monotonic relationships
between input and output variation can lead to misleading
conclusions during sensitivity analyses if PRCC is used.

4.2. Sampling (NS) and resampling (NR) in eFAST:

an HIV–ODE model example

We next examine a model for the interaction of HIV with CD4+
T cells (see Perelson et al., 1993). It describes four cell population
concentrations in the blood: uninfected T cells (T), latently
infected T cells (T*, i.e. cells that contain the provirus but are
not producing new viruses), actively infected T cells (T**, i.e. cells
that are producing viruses), and free virus (V). The model
comprises a total of nine parameters (see Table 2) and the
dynamics of the various populations are given by

dT

dt
¼ s� mT T þ rT 1�

T þ T� þ T��

Tmax

� �
� k1VT (15)

dT�

dt
¼ k1VT � mT T� � k2T� (16)

dT��

dt
¼ k2T� � mbT�� (17)

dV

dt
¼ NVmbT�� � k1VT � mV V (18)

where T(0) ¼ 1000 mm�3, T*(0) ¼ T**(0) ¼ 0, and V(0) ¼ 10�3

mm�3. The model admits two equilibrium solutions: an unin-
fected steady state (EB, with no virus present) and an endemically
infected steady state (EP). NV is a transcritical bifurcation
parameter for EB, or in other words, the system converges to the
uninfected steady state EB only if

NVoNcrit ; Ncrit ¼
ðk2 þ mT ÞmV þ k1T0

k1k2T0
(19)

System (15)–(18) reaches the endemically infected steady state
EP if NV4Ncrit. The ranges over which parameters are varied
(uniform pdfs) determine whether condition (19) is met or not. So,
the parameters NV, mT, mV, k1, and k2 (those included in (19)) should
appear significant in our US analysis, depending on the intervals
defined in Table 2 (Range column). Analytically, further conditions
defined on other parameters play a role in determining the
stability of EP: whether they show up or not in the US analysis
depends on the range over which they are varied (see Supplement
F for an example on the effect of different parameter ranges
on PRCC).

Parameter values given in Table 2 (Baseline column) produce a
stable EP, but stability can be lost through Hopf bifurcations
occurring for several parameter combinations (see Perelson et al.,
1993 for details).

We ran LHS/PRCC and eFAST analyses for different sample
sizes. For LHS/PRCC we used the following sample sizes: 100, 200,
300, 400, 500, and 1000, while for eFAST we set NS respectively to
65, 129, 257, 513, 1025, and 2049 (with NR ¼ 5). We test the
adequacy of the sample size for both PRCC and eFAST with
the TDCC. The number of parameters varied is 8, so the TDCC
gives only a trend (since the statistic is only correct for large
values of k, i.e. asymptotically). The results are summarized
below, while all the details can be found in Supplement D online
(Tables D.1–D.7).

4.2.1. PRCC and eFAST results for HIV model

PRCC results show how parameters NV, k2, and mv are
consistently significant and the most important, with k1 and mT

always in fourth and fifth positions (see Table D.1 online). TDCC
suggests N ¼ 200 as the optimal sample size (see Table D.2
online).

As mentioned before, use of a uniform or log-uniform
distribution (i.e. log-scale sampling) over a range spanning many
orders of magnitude can produce very different results. In fact by
using a log-scale sampling scheme, parameters k1, NV, and mT are
now consistently significant and the most important, with mV

always in fourth position (see Table D.3 online). Thus, by sampling
on a log scale, PRCC results are very different. Only parameter NV

is still identified as significant, while parameters k1 and mV lose
significance. The TDCC suggests again N ¼ 200 as the optimal
sample size (see Table D.4 online).

eFAST results (both Si and STi) confirm that parameters mV, NV,
and k2 are consistently significant and the most important
(see Table D.5 online). The TDCCs suggest NS ¼ 257 as the optimal
sample size, although increasing NS does not improve the
agreement in the results, except for NS ¼ 2049 (see Table D.7
online). The coefficients of variation (see Supplement A.5 online
for implementation) are always very high for the first-order
sensitivity indexes Si (likely because the values of Si are close to
zero) and generally below 10–15% for the total-order sensitivity
indexes STi (see Table D.6 online for details). Increasing NS only
improves the coefficients of variation for STi. We did not
implement a log-scale sampling for eFAST.
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Table 3
PRCC and eFAST results on the two-compartmental ODE model

Sensitivity index Parameters with significant sensitivity index

(A) US analysis with extracellular bacterial load (BE) as output of interest over three time points

Day 100 Day 500 Day 1000

PRCC k2, sIDC(–), k14(–) k2, k3(–), sIDC(–), d10, k4, k14(–) k2, d10, k3(–), sIDC(–), k4, k14(–), x(–), d8

eFAST– Si
(*) k2 k14, x, k2, k3, sIDC k3, k14, k2, sIDC, x

eFAST– STi
(*) k2 k14, x, k2, k3, sIDC, k4 k3, k14, k2, sIDC, x, k4

(B) US analysis with extracellular bacterial load (BE) as output of interest, at time 1000 days post infection

Inter-compartment Intra-compartment

PRCC d10, x(–) k2, k3(–), sIDC(–), k4, k14(–), d8

eFAST– Si
(*) x k3, k14, k2, sIDC

eFAST– STi
(*) x k3, k14, k2, sIDC, k4

(C) US analysis with mature dendritic cells (MDCs) as parameter of interest, at time 500 days post infection

Inter-compartment Intra-compartment

PRCC sIDC, k2, k3(–), d9(–) d10

eFAST– Si
(*) k14, k4, k3, sIDC n

eFAST– STi
(*) k14, k4, k3, sIDC, k2 n

(D) US analysis with T helper cells type I (Th1) as output of interest, at time 100 days post infection

Inter-compartment Intra-compartment

PRCC n, d10 k3, k2, sIDC, d4, k14(–)

eFAST– Si
(*) d10 k2, sIDC

eFAST– STi
(*) d10 k2, sIDC, d8

This table summarizes results shown in great detail in Supplement E.2 and E.3 online where different sample sizes are used for both LHS/PRCC and eFAST. The time points

tested are [100, 500, 1000]. The sign of PRCC is shown in parenthesis. The top two or three parameters are in bold italics. The order they are listed reflect the magnitude of

the coefficient (in absolute value, going from high to low). (*): Significant; i.e. po0.01. (A) PRCC and eFAST results grouped by significance over time. Extracellular bacterial

load (BE) is the output of interest. Panel (B) Inter- and intra-compartmental effects. PRCC and eFAST results with BE as output of interest, at time 1000. (C) Inter- and intra-

compartmental effects. PRCC and eFAST results with MDC as output of interest, at time 500. (D) Inter- and intra-compartmental effects. PRCC and eFAST results with Th1 as

output of interest, at time 100.
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If we combine results from both PRCCs and eFAST Si and STi,
parameters mT, k1, k2, NV, and mV indeed are significant, suggesting
how a properly designed US analysis should return bifurcation
parameters as significant. Note that in the original paper (Perelson
et al., 1993) these were shown analytically to be bifurcation
parameters.

Summary: PRCC and eFAST measure different things. This
example shows how results can overlap for a subset of parameters
(e.g. mV, NV, and k2). However, the ranking of the most important
effects is not preserved between the two methods. The TDCC
shows how PRCC more efficiently (i.e. with a lower sample size)
achieves a concordance in ranking the most important effects,
while eFAST may need larger sample sizes.
4.3. Standard and explorative US analysis: a two compartmental

ODE model

We now examine a more complex ODE to address the use of US
analysis in a multi-scale/multi-compartmental setting. As an
example, we choose an ODE model of M. tuberculosis infection in
humans published by our group (Marino and Kirschner, 2004): it
comprises a total of 17 equations, and a much larger set of 90
parameters that describe dynamics between two physiological
compartments (lymph node and lung). A detailed description of
the model can be found in Marino and Kirschner (2004) and
Marino et al. (2004). Basic details on the biology are given in
Supplement E and Fig. E.1.

We perform US analysis on the 12 parameters that are
specifically involved in establishing infection and linking the
two anatomical compartments (see Table E.1 online for details).
This set of parameters represents mechanisms whose action is
elicited either in the lung or in the lymph node compartment.
A more comprehensive analysis would include all the parameters
of the model, or at least the uncertain ones. Here we focus on a
subset for the purpose of illustrating both a standard and an
explorative US analysis. As discussed in Section 3.6, whether a
standard or an explorative US analysis is performed, the set of 12
parameters varied is always under investigation and the para-
meters are continuously varied. The difference between the two
analyses is subtle. A standard US analysis lists all the parameters
with a significant sensitivity index with respect to one or more
outputs of reference (in our example the output of reference is the
extracellular bacterial load—BE, see Table 3, panel A).

An explorative US analysis identifies which one of these effects
(significant sensitivities) has an impact in the same compartment
(intra) of the output of reference, or in a different compartment
(inter). In our example, we examined two outputs in the lung
compartment (extracellular bacterial load—BE, type I T helper
cells—Th1) and one output in the lymph node compartment
(mature dendritic cells—MDCs) (see Supplement E for details on
the biology). Then we computed both PRCC and eFAST coefficients
and classified all the parameters with significant sensitivity
indexes either as intra- or inter-compartmental effects, as having
effects, depending on the output of reference.

We performed LHS/PRCC and eFAST analyses for different
sample sizes. For LHS/PRCC we used the following sample sizes
100, 200, 300, 400, 500, and 1000, while for eFAST we set NS

respectively to 65, 129, 257, 513, 1025, and 2049 (with NR ¼ 5). We
tested the adequacy of the sample size for both PRCC and eFAST
with the TDCC. The number of parameters varied is small (i.e. 12),
so TDCC gives only a trend (as in the previous example). Since
analytical results are not available due to the size of the model
and the complexity of the equations, conclusions are not
as straightforward as in the previous examples. Standard US
analysis results are shown in Table 3, panel A, while an example of
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inter- and intra-compartmental analysis at specific time points is
given in Table 3, panels B–D. All the details can be found in
Supplement E.2 and E.3 online. We analyze three different time
points, namely 100, 500, and 1000 days post infection. Table 3
shows both PRCC and eFAST Si and STi; they are listed in
descending order (the first listed have the largest absolute values
and are in bold italics) and the sign of the PRCCs is in parenthesis.

Overall, this example shows how the sets of significant Si and
STi returned by efAST are consistent throughout the analysis,
returning the same list of important parameters with the same
ranking. eFAST results suggest sets of significant parameters that
are not always listed as significant by PRCC and are generally
smaller. Moreover, when the same set of parameters is returned,
the ranking is frequently different between the two methods
(see panel A).

Table 3 shows how the fraction of precursor T helper cells
(Th0) migrating out of the lymph node compartment into the
blood (x) and the maximum rate of IDCs’ activation/maturation/
migration from the lung compartment to the lymph node
compartment (d10) are alternatively classified as significant inter-
(panels B and D) or intra-compartmental (panel C) parameters by
PRCC and eFAST.

However, the parameters are not consistently found significant
by both indexes. For example, in panel C, d10 is found significant
only by PRCC, whereas parameter x is found as significant only by
eFast: Each parameter is ranked as the most important by one
method, but not identified at all by the other method. Another
example is given by parameter x in panel D: only PRCC lists it as
significant (while d10 is returned as very important by PRCC and
eFAST Si and STi).

Summary: This example shows how on a large complex model,
the use of both indexes is recommended because often the set of
the most important parameters is not consistent between the two
methods.

4.4. A delay differential model example

We next apply US analysis to a DDE model published by
our group (see Marino et al., 2007 for details). The model
investigates the role of delays in innate and adaptive immunity
to intra-cellular bacteria infection. It tracks five variables:
uninfected target cells (XU), infected cells (XI), bacteria (B), and
phenomenological variables capturing innate (IR) and adaptive
(AR) immunity. A detailed description of the model is given in
Marino et al. (2007). Here we only show the equations:

dXU

dt
¼ sU � a1XUB� mXU

XU (20)

dXI

dt
¼ a1XUB� a2XIAR � mXI

XI (21)

dB

dt
¼ a20B 1�

B

s

� �
� a3BIR � a4BAR (22)

dIR

dt
¼ sIR

þ

Z t

t�t1

w1ðsÞf 1ðBðsÞ; IRðsÞÞds� mIR
IR (23)

dAR

dt
¼ sAR

þ

Z t

t�t2

w2ðsÞf 2ðBðsÞ;ARðsÞÞds� mAR
AR (24)

Two delays are included in the model. The delay for innate
immunity, t1, occurs on the order of minutes to hours and t2 is the
delay for adaptive immunity on the order of days to weeks. We
assume that both responses are dependent solely on the bacterial
load (f1�f2 ¼ B(s)) in the previous ti time units (i ¼ 1,2), where the
kernel functions wi(s) (i ¼ 1,2) weight the past values of the
bacterial load, B(s).

We use a uniform kernel for innate immunity (with t1ffi1)
and an exponential growth kernel for adaptive immunity
(with t2ffi20). System (20)–(24) is comprised of 20 parameters
(15 independent parameters), seven of which are directly involved
in the existence condition for equilibrium solutions. Initial
conditions for the model are given in Table G.1 (see Supplement
G online). We solved the system numerically using the Matlab
solver dde23.8 The model admits two equilibria: boundary
equilibrium EB (clearance of infection, no bacteria) and a positive
equilibrium EP (damped or sustained oscillatory bacterial levels,
depending on the values of t1 and t2). The positive equilibrium EP

exists only if the following condition holds:

a20 � a3
sIR

mIR

� a4
sAIR

mAR

40 (25)

We sampled eight parameters simultaneously (t1, t2, a1, a2, a3,
a4, a20, s), defining uniform pdfs for their distributions. The
remainder of the parameters are held constant at their default
values (see Table G.1 online). Table G.1 is used to initialize the
sampling procedure (see Value column) and to define intervals for
UA (see Range column). We set the dimension of the sample in
LHS to N ¼ 1000, while eFAST is performed for three different NS

(i.e. 65, 129, and 257) and resampling size to NR ¼ 5 (for inference
on Si and STi), except for the sample NS ¼ 65 where we increased
NR to 20 to improve accuracy.

Some parameter combinations do not satisfy the existence
condition for EP (i.e. condition (25)); thus, we calculate PRCCs both
on the entire LHS dataset and on the subset of samples fulfilling
condition (25). In contrast, the same procedure cannot be applied
to eFAST. Because of its unique sampling technique, eFAST must
process the whole sampled dataset at once, and we can only
compare the sensitivity indexes calculated on the whole para-
meter space.

We summarize the main US analysis results below, while all
the details can be found in Tables G.2 and G.3 online. The indexes
are evaluated at five different time points (10, 30, 50, 100, and 200
days) and the model output chosen for SA is bacterial load
(Eq. (22)). Condition (A.9) is never satisfied by the choice of NS and
NR (see Table G.3 online). Panels A–C in Table G.2 online show
PRCC results, while panels D and E show eFAST results. Both PRCC
and eFAST suggest that bacterial load levels over time are mainly
affected by variations in the parameters a3 and a20. PRCC scatter
plots of these two parameters versus the bacterial load are shown
in Fig. 7 (using the whole LHS matrix), where the strong
correlations are confirmed. Parameter a4 is found consistently
significant only with the PRCC analysis (although the correlation
is weak).

eFAST (Table G.2 online Panels D and E, online) and PRCC
(Table G.2 online, Panels A and C) list delays t1 and t2 as important
sources of variation for bacterial load (PRCC predicts they are
significant with small negative correlations). Both delays are
significant only with the subset of the LHS matrix satisfying (25)
(Table G.2 online, Panel C online), in line with analytical results
where t1 and t2 play a role only when EP exists (t1 and t2 define
the nature of the equilibrium, with either sustained or damped
oscillations). The effect of t2 is lost if the whole LHS matrix is used
(Table G.2, panel A, online) and both are lost (Table G.2 online
Panel B) if only the subset of the LHS matrix not satisfying (25) is
used (in fact EB is not affected by changes in t1 and t2). PRCC
scatter plots (see Fig. 7) do not show any clear nonlinear non-
monotonic relationship between variations in the parameters t1,
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Fig. 7. PRCC scatter plots of parameters t1, t2, a1, a3, a4, and a20 (calculated at day 200, all eight parameters are varied simultaneously). Sample size N ¼ 1000. The abscissa

represents the residuals of the linear regression between the rank-transformed values of the parameter under investigation versus the rank-transformed values of all the

other parameters. The ordinate represents the residuals of the linear regression between the rank-transformed values of the output versus the rank-transformed values of

all the parameter under investigation The title of each plot represents the PRCC value with the corresponding p-value (see Table G.2 at 200 days in Supplementary material

online).
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t2, a1, and the output (bacterial load). PRCC and eFAST confirm
indirectly our analytical results: they return as significant those
parameters that are involved in the existence condition (25) for
equilibrium solutions.

Summary: This example shows how PRCC and eFAST results
can overlap. However, since the nature of the relationship
between inputs and output is not known a priori, PRCC and eFAST
should be used together (as in this example), if eFAST computa-
tional cost is not prohibitive.
5. Uncertainty and sensitivity analysis in agent-based models

ABMs (also called ‘‘individual-based models’’) are a formalism
evolved from early research in cellular automata and artificial life.
The defining feature of ABMs is that elements of the system are
represented as discrete agents that move and interact according
to defined rules, in an explicitly defined spatial environment.
Stochasticity enters the model as some decision-making rules can
be based on random chance, such as a random walk movement of
cells. In an ABM, the individual, possibly stochastic, interactions
between agents give rise to global, system-wide dynamics and
patterns. Thus, ABMs are ideal for studying complex systems in
which stochasticity, and spatial and temporal heterogeneity are
important, such as biological systems.

Stochastic models, such as the ABM we consider here, pose
unique challenges to US analysis. Most US analysis techniques
have been developed for use with deterministic models, such as
those presented in previous sections of this work. To our
knowledge, very few researchers have attempted extensive and
systematic US analysis on ABMs (Lempert et al., 2002; Riggs et al.,
2008; Segovia-Juarez et al., 2004).

To perform US analysis on an ABM, it is critical to keep in mind
the distinction between aleatory and epistemic uncertainty
during model building. In this analysis, epistemic uncertainty is
handled by holding a parameter to a fixed value during a
particular model simulation, but allowing probabilistic variation
between model simulations to reflect uncertainty. In contrast,
stochastic components vary randomly from moment to moment
within a single ABM simulation. Some studies have applied a
stochastic component to otherwise deterministic models by
sampling a random sequence of values prior to running a model
simulation (Helton, 1999; Helton and Breeding, 1993; Helton et al.,
1995). However, this approach cannot be easily applied to ABMs
as presented here: stochastic decisions made by each agent at
each time step are based on conditional probabilities that depend
on both random chance and the state of other interacting agents.
Therefore it is impossible to correctly specify a random sequence
of agent decisions prior to running the simulation. When
performing UA on an ABM, epistemic uncertainty and aleatory
uncertainty become conflated in the model output. It is difficult to
know whether variability in model outcome is due to experimen-
tally introduced variation in input parameters (epistemic un-
certainty) or to the inherent stochastic components of the model
(aleatory uncertainty). Therefore, it is difficult to apportion
variability to input parameters during SA. In this section, we
perform US analysis on an ABM, identify the strengths and
weaknesses of the PRCC and eFAST techniques in dealing with
aleatory uncertainty, and propose an averaging method to reduce
the influence of aleatory uncertainty.
5.1. An agent-based model example

As an example, we present a published ABM descri-
bing granuloma formation during M. tuberculosis infection
(Segovia-Juarez et al., 2004). This was the first ABM to use a
modification of a US analysis using PRCC. In this model, the spatial
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Fig. 8. Variation in ABM output due to epistemic uncertainty and aleatory

uncertainty. Differences in parameter values lead to either containment of

extracellular bacterial load (solid lines), or dissemination of bacteria (dotted

lines), as described previously in Segovia-Juarez et al. (2004). Within each

parameter combination, inherent stochasticity within the model causes aleatory

uncertainty. At time points earlier than approximately day 150, aleatory

uncertainty masks the epistemic difference that USA methodologies seek to

measure.

Table 4
Parameters analyzed in US analysis

Symbol Description Range of uniform pdf

l Chemokine diffusion coefficient [0.4, 0.8]

d Chemokine degradation coefficient [2.8811�10�4,

0.0011]

aBI Intra-cellular growth rate [0.002, 0.006]

Trecr Probability of T-cell recruitment [0.10, 0.40]

Tmove Probability of T-cell movement [0.01, 0.20]

Tactm Probability of T-cell activating macrophage [0.05, 0.20]

Minit Initial number of macrophages [40, 400]

Mrecr Probability of macrophage recruitment [0.20, 0.70]

Masp Activated macrophage speed [200, 8000]

Ntact Number of T cells needed to activate macrophage [1, 6]

pk Probability of bacteria killed by resting

macrophage

[0.01, 0.10]

pTk Probability of T cell kills a macrophage [0.01, 0.10]
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environment represents a 2 mm2 section of lung tissue. This area
is subdivided into a 100�100 lattice of 20 mm2 micro-compart-
ments. Agents (cells) populate this environment, representing
resident or infiltrating macrophages and T cells. Bacteria and
chemokines also exist in the model, but are treated as a
continuous quantity rather than discrete agents. Each micro-
compartment can contain at most one macrophage and one T-cell
agent (and a quantity of bacteria/chemokines, as these are
assumed to have negligible size). Some micro-compartments are
designated as vascular source compartments, through which new
macrophage and T-cell agents arrive from the blood.

A simulation is initiated by distributing an initial population
of resting macrophages randomly on the lattice and an initial
load of extracellular bacteria in the center of the lattice. The
simulation evolves by a series of discrete time steps, during which
rules are evaluated governing the diffusion of chemokines,
infection and replication of bacteria, and arrival, movement,
interaction, and change in phenotype of immune cells. Parameters
that we will analyze by US methods control initial conditions
and rates or probabilities used to evaluate rules (Table 4). See
Segovia-Juarez et al. (2004) for a more detailed description of the
model.

5.2. Aleatory versus epistemic uncertainty in ABMs

It is impossible to entirely separate model output variability
due to either aleatory or epistemic uncertainty. However, it is
useful to crudely quantify aleatory uncertainty in the absence of
variability due to epistemic uncertainty by repeatedly solving the
model, holding all parameters constant. Fig. 8 represents two
typical scenarios: containment of infection and dissemination.
The baseline set of parameter values differs between the two
scenarios (see Segovia-Juarez et al., 2004) for definitions of these
scenarios and baseline parameters). The variability around each
scenario is determined by aleatory uncertainty, while epistemic
uncertainty causes the emergence of this bimodal outcome. We
find that the containment scenario produces a moderate level of
aleatory uncertainty. To roughly quantify aleatory uncertainty, we
calculate the coefficient of variation of 10 replicates, holding all
parameters constant at their average values (middle value of the
Range column in Table 4). For this model, coefficients of variation
of the output for the containment scenario (extracellular bacterial
load) are 3.5% at day 500 and 62.4% at day 30. The coefficient of
variation at day 30 is much larger than at day 500, meaning that
aleatory uncertainty at this early time point will more strongly
mask any variability due to epistemic uncertainty introduced in
subsequent analysis steps. We will focus our analysis on day 30, as
this time point is analyzed in Segovia-Juarez et al. (2004),
providing a reference point to compare our results, and because
aleatory effects should be most problematic at this time point due
to the high coefficient of variation.

5.3. LHS/PRCC results: averaging replicates can reduce

computational cost

To study aleatory uncertainty, we propose a replication and
averaging scheme that can be applied to either PRCC or eFAST
analysis. First, parameter combinations are created using the LHS
or eFAST internal sampling algorithm. Next, multiple model
simulations are repeatedly run for each parameter combination
(replication step). Note that when using a pseudo-random
number generator in the algorithm, we reinitialize the random
seed for each model simulation. Finally, the sensitivity coefficients
are calculated using the average of model outputs across
replicates. By comparing these results with the sensitivity
coefficients obtained from each replicate individually, we can
assess whether US analysis is robust at a specific sample size. One
caveat to this approach is that using the average to characterize
the distribution of output values over aleatory uncertainty is
reliable only if the output values are clustered around a central
value (i.e. unimodal). We apply the replication and averaging
scheme to the Segovia-Juarez ABM.

5.4. LHS/PRCC results for ABM

When aleatory uncertainty is moderate, as is in this example,
LHS/PRCC produces consistent results at large LHS sample size: in
the original analysis of this model, Segovia-Juarez et al. use an LHS
sample size of 1000. As sample size is reduced to less than
approximately 200–300, two effects occur: first, PRCC becomes
less reliable due to the influence of aleatory uncertainty; second,
statistical power for PRCC significance is reduced due to the
smaller sample size; therefore weakly correlated parameters are
not found to be significant.
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Next, we explore whether averaging replicates can reduce
effects of aleatory uncertainty, allowing fewer computationally
intensive model simulations. We find that averaging replicates has
two beneficial effects. First, PRCC becomes reliable at smaller
sample sizes due to the removal of some of the variability induced
by aleatory uncertainty. Specifically, by using replicates (three
replicates in this case), a similar set of parameters with significant
PRCC is achieved with a smaller number of samples (at least 50)
compared to the standard scheme without replicates (at least 300
samples). Second, parameter values and model output becomes
more tightly correlated due to the removal of some confounding
aleatory noise, resulting in PRCC of greater magnitude (see Fig. 9).
This increase in PRCC magnitude that occurs by averaging is
apparent even when PRCC is already reliable due to large sample
size, e.g. 1000 samples (not shown). These benefits come at a cost,
however: if the total number of model simulations is held
constant, performing replicates reduces the number of samples
available for statistical tests (e.g. 300 parameter samples
simulated once, versus 100 parameter samples replicated three
times, then averaged, yielding 100 sample averages). In Fig. 9, we
show that there are some situations where the gain in PRCC
magnitude due to averaging is favorable despite the loss in
statistical power. In the original analysis of this model, using a
sample size of 1000 with no replication, Segovia-Juarez et al.
(2004) find nine significant parameters, including parameters aBI

and l. Reducing sample size to 300 with no replication (Fig. 9,
black bars), for a total of 300 model simulations, parameters aBI

and l are not significantly different from zero. Using 100 samples
and averaging three replicates (Fig. 9, gray bars), for a total of 300
model simulations, however, successfully identifies aBI and l as
significant, yielding performance similar to that of 1000 samples
used by Segovia-Juarez et al. Therefore, for this ABM we suggest
that performing replicate simulations of each parameter sample
and averaging these replicates is a useful strategy that can provide
better performance with fewer computationally intensive model
simulations.
5.5. eFAST results: aleatory uncertainty mishandled in total-order STi

To our knowledge, eFAST has been used to analyze an ABM
once before (Lempert et al., 2002), but details of the methodology
used are lacking. To explore the suitability of the eFAST method in
analysis of stochastic models, we analyze the Segovia-Juarez
model, described above, taking advantage of the replication and
averaging scheme (described in the previous section) and of the
use of a dummy parameter (as developed in Section 3.3.1). eFAST
is performed using 257 samples per search curve (i.e. NS ¼ 257,
chosen to satisfy condition (A.9)), a resampling size of 4
(i.e., NR ¼ 4), and four replicates for averaging. By allowing eFAST
to partition variance to a dummy parameter, we find that the
first-order index is relatively unaffected (Fig. 10A). However,
eFAST severely mishandles the variability induced by aleatory
uncertainty by incorrectly partitioning it to the total-order
sensitivity index, resulting in a large artifactual STi ¼ 24.3%
(Fig. 10B, dummy parameter, black bar). Thus, use of a dummy
parameter to quantify this artifact reveals that parameters with a
total-order STi in the range of �20–30% are likely artifactual. Using
replication and averaging to limit variability induced by aleatory
uncertainty successfully reduces this artifact by more than half
(Fig. 10B, dummy parameter, gray bar): this allows seven of the
eight significant parameters identified by LHS/PRCC to exceed the
dummy parameter background value for Si (Fig. 10A). Increasing
NS and NR, as well as performing averaging with additional
replicates will likely further improve the limit of detection.
Performing significance testing in combination with replication
and averaging, we find that eight of the nine parameters identified
as significant by LHS/PRCC are also identified by eFAST first-order
Si (Fig. 10A), while the STi coefficients are significantly different
from the dummy only for four of the eight parameters listed by
LHS/PRCC (Fig. 10B). Note that eFAST results come at a much
higher computational cost: 53,456 total model simulations using
eFAST, as opposed to 300 total model simulations with LHS/PRCC.

Summary: This ABM example shows how LHS/PRCC and eFAST
are typically in agreement, identifying a similar set of important
parameters (with the eFAST sets of important parameters being
smaller than PRCC, as shown in some of the deterministic model
examples in Section 4). However, these two methods have
different relative strengths and weaknesses. eFAST requires many
more model simulations, which is a particular problem as ABMs
are often more computationally intensive than deterministic
models. Also, when analyzing stochastic models, eFAST produces
an artifact whereby aleatory variance is inappropriately parti-
tioned to the total-order sensitivity index. Therefore, this example
suggests how the LHS/PRCC method (with the modifications
presented here) can perform better than eFAST for a specific time
point, reaching the same conclusions with much less computa-
tional cost.

The eFAST method has the strength of identifying non-
monotonic sensitivities, however. Though we see no evidence of
this strength in the ABM we analyze here, there is no a priori way
of knowing if non-monotonic sensitivities are present in a model.
Therefore, if computational cost is not prohibitive, use of eFAST on
stochastic models can complement LHS/PRCC results. In this case,
one should take steps to reduce the artifact of eFAST mishandling
aleatory variance in the total-order sensitivity index, or one
should rely solely on the first-order index, as it is unaffected by
the artifact.
6. Discussion and conclusion

Uncertainty and sensitivity (US) analyses offer a way to assess
the adequacy of models and establish what factors affect model
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Fig. 10. Performance of eFAST on the stochastic agent-based model of Segovia-Juarez et al. (2004). (A) eFAST first-order sensitivity index Si. Replication and averaging (gray

bars) have a small effect on Si, allowing additional parameters (indicated by arrow) to be identified as statistically significant (*).(B) eFAST total-order sensitivity index STi.

eFAST artifactually assigns aleatory variance to the total-order index, resulting in a high dummy parameter background value (dummy parameter, black bar). Replication

and averaging (gray bars) partially reduce this artifact, allowing an additional parameter (indicated by arrow) to be found significant (*).
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outputs. We reviewed and compared two specific types of global
sensitivity analysis (SA) indexes that have proven to be among the
most reliable and efficient, namely a sampling-based method
(partial rank correlation coefficient—PRCC) and a variance-based
method (extended Fourier amplitude sensitivity test—eFAST). All
functions used throughout the paper are available on our website
(http://malthus.micro.med.umich.edu/lab/usanalysis.html).

PRCC provides answers to questions such as how the output is
affected if we increase (or decrease) a specific parameter (linearly
discounting the effects of the uncertainty over the rest of the
parameters). Thus PRCC can be informative on what parameters to
target if we want to achieve specific goals (e.g. control or
regulatory mechanisms). For example, the most significant set of
parameters can be used to determine how to efficiently reduce
viral load or increase immune response (by both timing and
magnitude). eFAST, and all variance-based methods in general,
indicate which parameter uncertainty has the greatest impact on
output variability. In other words, our predictions will be
strengthened if we can reduce uncertainty and get better
estimates on specific parameters of the model (i.e. the ones with
highest Si and STi sensitivity coefficients). This will also enhance
any additional PRCC or sampling-based analysis, because any
regulatory or control strategy will be more reliable.

A general finding was that a properly designed US analysis
returns a set of bifurcation parameters as significant; thus US
analysis can be an adequate alternative when an analytical
solution to a mathematical system is not possible. This holds
true for both sample and variance-based methods (at least if we
consider the examples of Section 4).

One critical point is the selection of adequate (pdfs) and the
choice of parameter ranges used for sampling: The selection of
probability distributions for the uncertain parameters depends in
part on whether the intent of the analysis is an exploration of
variable effects (i.e., a SA) or a propagation of uncertainty to assess
the uncertainty in the outcomes of interest (i.e., an uncertainty
analysis (US)). For meaningful US, the selected distributions are
chosen based on the degree of our understanding of biology with
respect to the appropriate values of model parameters. In contrast,
the distributions might be selected simply to fully explore
potential variable effects in a SA.

Choice of parameter ranges should also be guided by the
available knowledge of the biological problem. If a parameter
range is completely outside the biological realm, the practical
relevance of the US analysis is lost. Unfortunately, exact or even
hypothetical biological ranges are many times unknown. Unless
the choice of very small ranges for certain parameters is guided by
some a priori knowledge, the sampling should be performed
within the whole range of plausible values, since US analysis
results can be quite different (see Supplement F, Fig F.1 and
Table F.1 for examples of how PRCC and eFAST results can be
affected by sampling different ranges). Moreover, if the range of
variation for some parameter spans several orders of magnitude
and we want to avoid under-sampling in the outer ranges of
parameter space, the implementation of a logarithmic sampling

http://malthus.micro.med.umich.edu/lab/usanalysis.html
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scheme (for example, a log-uniform in place of a uniform pdf)
would achieve the goal, but the final results will be affected
(as shown in Supplement D online, Tables D.1 and D.3).

Our examples showed how PRCC and eFAST could give
different results, where nonlinear and non-monotonic relation-
ships between inputs and output lead to misleading conclusions,
even with a simple prey–predator model (see Section 4.1).
eFAST is more general than PRCC (it deals with any type
of relationship between inputs and outputs of a model) with
one major drawback: its computational cost, especially for
computing STi. Our examples highlight how a large number of
iterations are needed to achieve a recommended degree of
accuracy in eFAST (as also shown in Fig. 8.9 at p. 190 of Saltelli
et al., 2000).

We designed a new method (together with a heuristic for its
accuracy) to check for significant eFAST Si and STi. This new
method is based on a two-sample t-test approach and uses a
resampling scheme to compare each sensitivity index with that of
a dummy parameter. The use of dummy parameters is a standard
practice in screening methods (see Saltelli et al., 2000, Chapter 4),
although, to our knowledge, it has never been applied in the
context of eFAST.

We built several functions to display scatter plots of sampled
parameters versus the output under study (given on our website,
see http://malthus.micro.med.umich.edu/lab/usanalysis.html):
they can be extremely useful to detect non-monotonicities and
nonlinearities (as shown in Section 4) and possibly explain why
PRCC and eFAST results are different.

In the context of agent-based model (ABM), we also imple-
mented a new averaging strategy to efficiently and reliably
perform US analysis within the context of this particular class of
stochastic models. By running the ABM multiple times with the
same set of parameters and then averaging the output, we are able
to attenuate the effect of aleatory uncertainty, obtaining more
reliable results both for PRCC and eFAST.

We also implemented a concordance measure (top-down
coefficient of concordance—TDCC) of the adequacy of the sample
size and can check if PRCC and eFAST return a similar set of
important parameters.

Throughout our examples, we found that the set of significant
first-order Si and total-order STi sensitivity indexes returned by
eFAST is consistent and with the same ranking. eFAST generally
returns smaller subsets of parameters with significant Si and STi,
compared to the set of parameters with significant PRCC. Also,
eFAST often returns Si and STi for parameters that are not listed as
significant by PRCC and, when a similar set of parameters is
returned, the order of importance is frequently different between
the two methods.

Based on the examples shown, we conclude that PRCC and
eFAST Si and STi should both be computed, keeping in mind that
they measure different things, and that eFAST is generally
computationally more expensive. If the computational cost is
too high (i.e. cpu time per one model run), more efficient methods
are available (e.g. methods that are less affected by non-
monotonicities). A lower computational cost can be achieved by
reducing NS and NR (i.e. the total number of runs), but the
accuracy of the results might be affected. To increase the accuracy
of eFAST results, in general, it is better to increase NS first
(and check for the TDCC to see if that sample size is sufficient to
capture a similar set of most important parameters), and then
eventually increase NR (to improve the accuracy of inference on
the indexes). We found that values and significances of first-order
Si are affected by increasing NS: the values of the not significant Si

get smaller, as does the dummy parameter Sdummy, making the
t-test more reliable. Increasing NS does not affect STi values,
although the t-test becomes more precise.
In general, the computational execution time of the model is
the major concern when performing US analysis (although it was
not a major issue for the examples given in Section 4 and for the
ABM). Models with several parameters and many complex
nonlinear mechanisms likely result in high computational costs.
Screening methods are available to address this problem. Within
the class of screening methods, Morris (1991) (or elementary
effects) is the most popular: it is global, computationally efficient,
and should be implemented as a first preliminary US analysis
when the execution time of the model is prohibitive (several
hours or days).

In summary, characterizing uncertainty in parameter values
and initial conditions in mathematical models in biology is
attainable and is dependent on the type of system under study.
For the math biology community to continue to gain a foothold
and have an impact in important biology problems, it is clear that
identifying uncertainty in our models is of key importance. By the
very act of classifying this uncertainty, we can simultaneously
identify the parameters (i.e. biological mechanisms) that are
driving system outputs. These mechanisms can then be posed to
the experimental community to test. This close interaction
between theorists and experimentalists provides the greatest
opportunity for the use of mathematical models.
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